uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
s_log1p.c
Go to the documentation of this file.
1 
2 /* @(#)s_log1p.c 1.4 96/03/07 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* double log1p(double x)
15  *
16  * Method :
17  * 1. Argument Reduction: find k and f such that
18  * 1+x = 2^k * (1+f),
19  * where sqrt(2)/2 < 1+f < sqrt(2) .
20  *
21  * Note. If k=0, then f=x is exact. However, if k!=0, then f
22  * may not be representable exactly. In that case, a correction
23  * term is need. Let u=1+x rounded. Let c = (1+x)-u, then
24  * log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
25  * and add back the correction term c/u.
26  * (Note: when x > 2**53, one can simply return log(x))
27  *
28  * 2. Approximation of log1p(f).
29  * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
30  * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
31  * = 2s + s*R
32  * We use a special Remes algorithm on [0,0.1716] to generate
33  * a polynomial of degree 14 to approximate R The maximum error
34  * of this polynomial approximation is bounded by 2**-58.45. In
35  * other words,
36  * 2 4 6 8 10 12 14
37  * R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s +Lp6*s +Lp7*s
38  * (the values of Lp1 to Lp7 are listed in the program)
39  * and
40  * | 2 14 | -58.45
41  * | Lp1*s +...+Lp7*s - R(z) | <= 2
42  * | |
43  * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
44  * In order to guarantee error in log below 1ulp, we compute log
45  * by
46  * log1p(f) = f - (hfsq - s*(hfsq+R)).
47  *
48  * 3. Finally, log1p(x) = k*ln2 + log1p(f).
49  * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
50  * Here ln2 is split into two floating point number:
51  * ln2_hi + ln2_lo,
52  * where n*ln2_hi is always exact for |n| < 2000.
53  *
54  * Special cases:
55  * log1p(x) is NaN with signal if x < -1 (including -INF) ;
56  * log1p(+INF) is +INF; log1p(-1) is -INF with signal;
57  * log1p(NaN) is that NaN with no signal.
58  *
59  * Accuracy:
60  * according to an error analysis, the error is always less than
61  * 1 ulp (unit in the last place).
62  *
63  * Constants:
64  * The hexadecimal values are the intended ones for the following
65  * constants. The decimal values may be used, provided that the
66  * compiler will convert from decimal to binary accurately enough
67  * to produce the hexadecimal values shown.
68  *
69  * Note: Assuming log() return accurate answer, the following
70  * algorithm can be used to compute log1p(x) to within a few ULP:
71  *
72  * u = 1+x;
73  * if(u==1.0) return x ; else
74  * return log(u)*(x/(u-1.0));
75  *
76  * See HP-15C Advanced Functions Handbook, p.193.
77  */
78 
79 #include "fdlibm.h"
80 
81 #ifdef __STDC__
82 static const double
83 #else
84 static double
85 #endif
86 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
87 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
88 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
89 Lp1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
90 Lp2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
91 Lp3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
92 Lp4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
93 Lp5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
94 Lp6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
95 Lp7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
96 
97 static double zero = 0.0;
98 
99 #ifdef __STDC__
100  double log1p(double x)
101 #else
102  double log1p(x)
103  double x;
104 #endif
105 {
106  double hfsq,f,c=0,s,z,R,u;
107  int k,hx,hu,ax;
108 
109  hx = __HI(x); /* high word of x */
110  ax = hx&0x7fffffff;
111 
112  k = 1;
113  if (hx < 0x3FDA827A) { /* x < 0.41422 */
114  if(ax>=0x3ff00000) { /* x <= -1.0 */
115  if(x==-1.0) return -two54/zero; /* log1p(-1)=+inf */
116  else return (x-x)/(x-x); /* log1p(x<-1)=NaN */
117  }
118  if(ax<0x3e200000) { /* |x| < 2**-29 */
119  if(two54+x>zero /* raise inexact */
120  &&ax<0x3c900000) /* |x| < 2**-54 */
121  return x;
122  else
123  return x - x*x*0.5;
124  }
125  if(hx>0||hx<=((int)0xbfd2bec3)) {
126  k=0;f=x;hu=1;} /* -0.2929<x<0.41422 */
127  }
128  if (hx >= 0x7ff00000) return x+x;
129  if(k!=0) {
130  if(hx<0x43400000) {
131  u = 1.0+x;
132  hu = __HI(u); /* high word of u */
133  k = (hu>>20)-1023;
134  c = (k>0)? 1.0-(u-x):x-(u-1.0);/* correction term */
135  c /= u;
136  } else {
137  u = x;
138  hu = __HI(u); /* high word of u */
139  k = (hu>>20)-1023;
140  c = 0;
141  }
142  hu &= 0x000fffff;
143  if(hu<0x6a09e) {
144  __HI(u) = hu|0x3ff00000; /* normalize u */
145  } else {
146  k += 1;
147  __HI(u) = hu|0x3fe00000; /* normalize u/2 */
148  hu = (0x00100000-hu)>>2;
149  }
150  f = u-1.0;
151  }
152  hfsq=0.5*f*f;
153  if(hu==0) { /* |f| < 2**-20 */
154  if(f==zero) { if(k==0) return zero;
155  else {c += k*ln2_lo; return k*ln2_hi+c;}}
156  R = hfsq*(1.0-0.66666666666666666*f);
157  if(k==0) return f-R; else
158  return k*ln2_hi-((R-(k*ln2_lo+c))-f);
159  }
160  s = f/(2.0+f);
161  z = s*s;
162  R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
163  if(k==0) return f-(hfsq-s*(hfsq+R)); else
164  return k*ln2_hi-((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
165 }