uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
s_atan.c
Go to the documentation of this file.
1 
2 /* @(#)s_atan.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  *
13  */
14 
15 /* atan(x)
16  * Method
17  * 1. Reduce x to positive by atan(x) = -atan(-x).
18  * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
19  * is further reduced to one of the following intervals and the
20  * arctangent of t is evaluated by the corresponding formula:
21  *
22  * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
23  * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
24  * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
25  * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
26  * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
27  *
28  * Constants:
29  * The hexadecimal values are the intended ones for the following
30  * constants. The decimal values may be used, provided that the
31  * compiler will convert from decimal to binary accurately enough
32  * to produce the hexadecimal values shown.
33  */
34 
35 #include "fdlibm.h"
36 
37 #ifdef __STDC__
38 static const double atanhi[] = {
39 #else
40 static double atanhi[] = {
41 #endif
42  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
43  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
44  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
45  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
46 };
47 
48 #ifdef __STDC__
49 static const double atanlo[] = {
50 #else
51 static double atanlo[] = {
52 #endif
53  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
54  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
55  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
56  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
57 };
58 
59 #ifdef __STDC__
60 static const double aT[] = {
61 #else
62 static double aT[] = {
63 #endif
64  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
65  -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
66  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
67  -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
68  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
69  -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
70  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
71  -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
72  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
73  -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
74  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
75 };
76 
77 #ifdef __STDC__
78  static const double
79 #else
80  static double
81 #endif
82 one = 1.0,
83 huge = 1.0e300;
84 
85 #ifdef __STDC__
86  double atan(double x)
87 #else
88  double atan(x)
89  double x;
90 #endif
91 {
92  double w,s1,s2,z;
93  int ix,hx,id;
94 
95  hx = __HI(x);
96  ix = hx&0x7fffffff;
97  if(ix>=0x44100000) { /* if |x| >= 2^66 */
98  if(ix>0x7ff00000||
99  (ix==0x7ff00000&&(__LO(x)!=0)))
100  return x+x; /* NaN */
101  if(hx>0) return atanhi[3]+atanlo[3];
102  else return -atanhi[3]-atanlo[3];
103  } if (ix < 0x3fdc0000) { /* |x| < 0.4375 */
104  if (ix < 0x3e200000) { /* |x| < 2^-29 */
105  if(huge+x>one) return x; /* raise inexact */
106  }
107  id = -1;
108  } else {
109  x = fabs(x);
110  if (ix < 0x3ff30000) { /* |x| < 1.1875 */
111  if (ix < 0x3fe60000) { /* 7/16 <=|x|<11/16 */
112  id = 0; x = (2.0*x-one)/(2.0+x);
113  } else { /* 11/16<=|x|< 19/16 */
114  id = 1; x = (x-one)/(x+one);
115  }
116  } else {
117  if (ix < 0x40038000) { /* |x| < 2.4375 */
118  id = 2; x = (x-1.5)/(one+1.5*x);
119  } else { /* 2.4375 <= |x| < 2^66 */
120  id = 3; x = -1.0/x;
121  }
122  }}
123  /* end of argument reduction */
124  z = x*x;
125  w = z*z;
126  /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
127  s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
128  s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
129  if (id<0) return x - x*(s1+s2);
130  else {
131  z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
132  return (hx<0)? -z:z;
133  }
134 }