uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
k_tan.c
Go to the documentation of this file.
1 #pragma ident "@(#)k_tan.c 1.5 04/04/22 SMI"
2 
3 /*
4  * ====================================================
5  * Copyright 2004 Sun Microsystems, Inc. All Rights Reserved.
6  *
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* INDENT OFF */
14 /* __kernel_tan( x, y, k )
15  * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
16  * Input x is assumed to be bounded by ~pi/4 in magnitude.
17  * Input y is the tail of x.
18  * Input k indicates whether tan (if k = 1) or -1/tan (if k = -1) is returned.
19  *
20  * Algorithm
21  * 1. Since tan(-x) = -tan(x), we need only to consider positive x.
22  * 2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
23  * 3. tan(x) is approximated by a odd polynomial of degree 27 on
24  * [0,0.67434]
25  * 3 27
26  * tan(x) ~ x + T1*x + ... + T13*x
27  * where
28  *
29  * |tan(x) 2 4 26 | -59.2
30  * |----- - (1+T1*x +T2*x +.... +T13*x )| <= 2
31  * | x |
32  *
33  * Note: tan(x+y) = tan(x) + tan'(x)*y
34  * ~ tan(x) + (1+x*x)*y
35  * Therefore, for better accuracy in computing tan(x+y), let
36  * 3 2 2 2 2
37  * r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
38  * then
39  * 3 2
40  * tan(x+y) = x + (T1*x + (x *(r+y)+y))
41  *
42  * 4. For x in [0.67434,pi/4], let y = pi/4 - x, then
43  * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
44  * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
45  */
46 
47 #include "fdlibm.h"
48 
49 static const double xxx[] = {
50  3.33333333333334091986e-01, /* 3FD55555, 55555563 */
51  1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
52  5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
53  2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
54  8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
55  3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
56  1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
57  5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
58  2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
59  7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
60  7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
61  -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
62  2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
63 /* one */ 1.00000000000000000000e+00, /* 3FF00000, 00000000 */
64 /* pio4 */ 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
65 /* pio4lo */ 3.06161699786838301793e-17 /* 3C81A626, 33145C07 */
66 };
67 #define one xxx[13]
68 #define pio4 xxx[14]
69 #define pio4lo xxx[15]
70 #define T xxx
71 /* INDENT ON */
72 
73 double
74 __kernel_tan(double x, double y, int iy) {
75  double z, r, v, w, s;
76  int ix, hx;
77 
78  hx = __HI(x); /* high word of x */
79  ix = hx & 0x7fffffff; /* high word of |x| */
80  if (ix < 0x3e300000) { /* x < 2**-28 */
81  if ((int) x == 0) { /* generate inexact */
82  if (((ix | __LO(x)) | (iy + 1)) == 0)
83  return one / fabs(x);
84  else {
85  if (iy == 1)
86  return x;
87  else { /* compute -1 / (x+y) carefully */
88  double a, t;
89 
90  z = w = x + y;
91  __LO(z) = 0;
92  v = y - (z - x);
93  t = a = -one / w;
94  __LO(t) = 0;
95  s = one + t * z;
96  return t + a * (s + t * v);
97  }
98  }
99  }
100  }
101  if (ix >= 0x3FE59428) { /* |x| >= 0.6744 */
102  if (hx < 0) {
103  x = -x;
104  y = -y;
105  }
106  z = pio4 - x;
107  w = pio4lo - y;
108  x = z + w;
109  y = 0.0;
110  }
111  z = x * x;
112  w = z * z;
113  /*
114  * Break x^5*(T[1]+x^2*T[2]+...) into
115  * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
116  * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
117  */
118  r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] +
119  w * T[11]))));
120  v = z * (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] +
121  w * T[12])))));
122  s = z * x;
123  r = y + z * (s * (r + v) + y);
124  r += T[0] * s;
125  w = x + r;
126  if (ix >= 0x3FE59428) {
127  v = (double) iy;
128  return (double) (1 - ((hx >> 30) & 2)) *
129  (v - 2.0 * (x - (w * w / (w + v) - r)));
130  }
131  if (iy == 1)
132  return w;
133  else {
134  /*
135  * if allow error up to 2 ulp, simply return
136  * -1.0 / (x+r) here
137  */
138  /* compute -1.0 / (x+r) accurately */
139  double a, t;
140  z = w;
141  __LO(z) = 0;
142  v = r - (z - x); /* z+v = r+x */
143  t = a = -1.0 / w; /* a = -1.0/w */
144  __LO(t) = 0;
145  s = 1.0 + t * z;
146  return t + a * (s + t * v);
147  }
148 }