uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ip_frag.c
Go to the documentation of this file.
1 
7 /*
8  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without modification,
12  * are permitted provided that the following conditions are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright notice,
15  * this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright notice,
17  * this list of conditions and the following disclaimer in the documentation
18  * and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  * derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31  * OF SUCH DAMAGE.
32  *
33  * This file is part of the lwIP TCP/IP stack.
34  *
35  * Author: Jani Monoses <jani@iv.ro>
36  * Simon Goldschmidt
37  * original reassembly code by Adam Dunkels <adam@sics.se>
38  *
39  */
40 
41 #include "lwip/opt.h"
42 #include "lwip/ip_frag.h"
43 #include "lwip/def.h"
44 #include "lwip/inet_chksum.h"
45 #include "lwip/netif.h"
46 #include "lwip/snmp.h"
47 #include "lwip/stats.h"
48 #include "lwip/icmp.h"
49 
50 #include <string.h>
51 
52 #if IP_REASSEMBLY
53 
66 #ifndef IP_REASS_CHECK_OVERLAP
67 #define IP_REASS_CHECK_OVERLAP 1
68 #endif /* IP_REASS_CHECK_OVERLAP */
69 
74 #ifndef IP_REASS_FREE_OLDEST
75 #define IP_REASS_FREE_OLDEST 1
76 #endif /* IP_REASS_FREE_OLDEST */
77 
78 #define IP_REASS_FLAG_LASTFRAG 0x01
79 
88 #ifdef PACK_STRUCT_USE_INCLUDES
89 # include "arch/bpstruct.h"
90 #endif
92 struct ip_reass_helper {
93  PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
94  PACK_STRUCT_FIELD(u16_t start);
98 #ifdef PACK_STRUCT_USE_INCLUDES
99 # include "arch/epstruct.h"
100 #endif
101 
102 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB) \
103  (ip_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
104  ip_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
105  IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
106 
107 /* global variables */
108 static struct ip_reassdata *reassdatagrams;
109 static u16_t ip_reass_pbufcount;
110 
111 /* function prototypes */
112 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
113 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
114 
121 void
122 ip_reass_tmr(void)
123 {
124  struct ip_reassdata *r, *prev = NULL;
125 
126  r = reassdatagrams;
127  while (r != NULL) {
128  /* Decrement the timer. Once it reaches 0,
129  * clean up the incomplete fragment assembly */
130  if (r->timer > 0) {
131  r->timer--;
132  LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n",(u16_t)r->timer));
133  prev = r;
134  r = r->next;
135  } else {
136  /* reassembly timed out */
137  struct ip_reassdata *tmp;
138  LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
139  tmp = r;
140  /* get the next pointer before freeing */
141  r = r->next;
142  /* free the helper struct and all enqueued pbufs */
143  ip_reass_free_complete_datagram(tmp, prev);
144  }
145  }
146 }
147 
157 static int
158 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
159 {
160  u16_t pbufs_freed = 0;
161  u8_t clen;
162  struct pbuf *p;
163  struct ip_reass_helper *iprh;
164 
165  LWIP_ASSERT("prev != ipr", prev != ipr);
166  if (prev != NULL) {
167  LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
168  }
169 
171 #if LWIP_ICMP
172  iprh = (struct ip_reass_helper *)ipr->p->payload;
173  if (iprh->start == 0) {
174  /* The first fragment was received, send ICMP time exceeded. */
175  /* First, de-queue the first pbuf from r->p. */
176  p = ipr->p;
177  ipr->p = iprh->next_pbuf;
178  /* Then, copy the original header into it. */
179  SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
180  icmp_time_exceeded(p, ICMP_TE_FRAG);
181  clen = pbuf_clen(p);
182  LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
183  pbufs_freed += clen;
184  pbuf_free(p);
185  }
186 #endif /* LWIP_ICMP */
187 
188  /* First, free all received pbufs. The individual pbufs need to be released
189  separately as they have not yet been chained */
190  p = ipr->p;
191  while (p != NULL) {
192  struct pbuf *pcur;
193  iprh = (struct ip_reass_helper *)p->payload;
194  pcur = p;
195  /* get the next pointer before freeing */
196  p = iprh->next_pbuf;
197  clen = pbuf_clen(pcur);
198  LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
199  pbufs_freed += clen;
200  pbuf_free(pcur);
201  }
202  /* Then, unchain the struct ip_reassdata from the list and free it. */
203  ip_reass_dequeue_datagram(ipr, prev);
204  LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= pbufs_freed);
205  ip_reass_pbufcount -= pbufs_freed;
206 
207  return pbufs_freed;
208 }
209 
210 #if IP_REASS_FREE_OLDEST
211 
220 static int
221 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
222 {
223  /* @todo Can't we simply remove the last datagram in the
224  * linked list behind reassdatagrams?
225  */
226  struct ip_reassdata *r, *oldest, *prev;
227  int pbufs_freed = 0, pbufs_freed_current;
228  int other_datagrams;
229 
230  /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
231  * but don't free the datagram that 'fraghdr' belongs to! */
232  do {
233  oldest = NULL;
234  prev = NULL;
235  other_datagrams = 0;
236  r = reassdatagrams;
237  while (r != NULL) {
238  if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
239  /* Not the same datagram as fraghdr */
240  other_datagrams++;
241  if (oldest == NULL) {
242  oldest = r;
243  } else if (r->timer <= oldest->timer) {
244  /* older than the previous oldest */
245  oldest = r;
246  }
247  }
248  if (r->next != NULL) {
249  prev = r;
250  }
251  r = r->next;
252  }
253  if (oldest != NULL) {
254  pbufs_freed_current = ip_reass_free_complete_datagram(oldest, prev);
255  pbufs_freed += pbufs_freed_current;
256  }
257  } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
258  return pbufs_freed;
259 }
260 #endif /* IP_REASS_FREE_OLDEST */
261 
268 static struct ip_reassdata*
269 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
270 {
271  struct ip_reassdata* ipr;
272  /* No matching previous fragment found, allocate a new reassdata struct */
273  ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
274  if (ipr == NULL) {
275 #if IP_REASS_FREE_OLDEST
276  if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
277  ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
278  }
279  if (ipr == NULL)
280 #endif /* IP_REASS_FREE_OLDEST */
281  {
282  IPFRAG_STATS_INC(ip_frag.memerr);
283  LWIP_DEBUGF(IP_REASS_DEBUG,("Failed to alloc reassdata struct\n"));
284  return NULL;
285  }
286  }
287  memset(ipr, 0, sizeof(struct ip_reassdata));
288  ipr->timer = IP_REASS_MAXAGE;
289 
290  /* enqueue the new structure to the front of the list */
291  ipr->next = reassdatagrams;
292  reassdatagrams = ipr;
293  /* copy the ip header for later tests and input */
294  /* @todo: no ip options supported? */
295  SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
296  return ipr;
297 }
298 
303 static void
304 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
305 {
306 
307  /* dequeue the reass struct */
308  if (reassdatagrams == ipr) {
309  /* it was the first in the list */
310  reassdatagrams = ipr->next;
311  } else {
312  /* it wasn't the first, so it must have a valid 'prev' */
313  LWIP_ASSERT("sanity check linked list", prev != NULL);
314  prev->next = ipr->next;
315  }
316 
317  /* now we can free the ip_reass struct */
318  memp_free(MEMP_REASSDATA, ipr);
319 }
320 
330 static int
331 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p)
332 {
333  struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev=NULL;
334  struct pbuf *q;
335  u16_t offset,len;
336  struct ip_hdr *fraghdr;
337  int valid = 1;
338 
339  /* Extract length and fragment offset from current fragment */
340  fraghdr = (struct ip_hdr*)new_p->payload;
341  len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
342  offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
343 
344  /* overwrite the fragment's ip header from the pbuf with our helper struct,
345  * and setup the embedded helper structure. */
346  /* make sure the struct ip_reass_helper fits into the IP header */
347  LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
348  sizeof(struct ip_reass_helper) <= IP_HLEN);
349  iprh = (struct ip_reass_helper*)new_p->payload;
350  iprh->next_pbuf = NULL;
351  iprh->start = offset;
352  iprh->end = offset + len;
353 
354  /* Iterate through until we either get to the end of the list (append),
355  * or we find on with a larger offset (insert). */
356  for (q = ipr->p; q != NULL;) {
357  iprh_tmp = (struct ip_reass_helper*)q->payload;
358  if (iprh->start < iprh_tmp->start) {
359  /* the new pbuf should be inserted before this */
360  iprh->next_pbuf = q;
361  if (iprh_prev != NULL) {
362  /* not the fragment with the lowest offset */
363 #if IP_REASS_CHECK_OVERLAP
364  if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
365  /* fragment overlaps with previous or following, throw away */
366  goto freepbuf;
367  }
368 #endif /* IP_REASS_CHECK_OVERLAP */
369  iprh_prev->next_pbuf = new_p;
370  } else {
371  /* fragment with the lowest offset */
372  ipr->p = new_p;
373  }
374  break;
375  } else if(iprh->start == iprh_tmp->start) {
376  /* received the same datagram twice: no need to keep the datagram */
377  goto freepbuf;
378 #if IP_REASS_CHECK_OVERLAP
379  } else if(iprh->start < iprh_tmp->end) {
380  /* overlap: no need to keep the new datagram */
381  goto freepbuf;
382 #endif /* IP_REASS_CHECK_OVERLAP */
383  } else {
384  /* Check if the fragments received so far have no wholes. */
385  if (iprh_prev != NULL) {
386  if (iprh_prev->end != iprh_tmp->start) {
387  /* There is a fragment missing between the current
388  * and the previous fragment */
389  valid = 0;
390  }
391  }
392  }
393  q = iprh_tmp->next_pbuf;
394  iprh_prev = iprh_tmp;
395  }
396 
397  /* If q is NULL, then we made it to the end of the list. Determine what to do now */
398  if (q == NULL) {
399  if (iprh_prev != NULL) {
400  /* this is (for now), the fragment with the highest offset:
401  * chain it to the last fragment */
402 #if IP_REASS_CHECK_OVERLAP
403  LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
404 #endif /* IP_REASS_CHECK_OVERLAP */
405  iprh_prev->next_pbuf = new_p;
406  if (iprh_prev->end != iprh->start) {
407  valid = 0;
408  }
409  } else {
410 #if IP_REASS_CHECK_OVERLAP
411  LWIP_ASSERT("no previous fragment, this must be the first fragment!",
412  ipr->p == NULL);
413 #endif /* IP_REASS_CHECK_OVERLAP */
414  /* this is the first fragment we ever received for this ip datagram */
415  ipr->p = new_p;
416  }
417  }
418 
419  /* At this point, the validation part begins: */
420  /* If we already received the last fragment */
421  if ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0) {
422  /* and had no wholes so far */
423  if (valid) {
424  /* then check if the rest of the fragments is here */
425  /* Check if the queue starts with the first datagram */
426  if (((struct ip_reass_helper*)ipr->p->payload)->start != 0) {
427  valid = 0;
428  } else {
429  /* and check that there are no wholes after this datagram */
430  iprh_prev = iprh;
431  q = iprh->next_pbuf;
432  while (q != NULL) {
433  iprh = (struct ip_reass_helper*)q->payload;
434  if (iprh_prev->end != iprh->start) {
435  valid = 0;
436  break;
437  }
438  iprh_prev = iprh;
439  q = iprh->next_pbuf;
440  }
441  /* if still valid, all fragments are received
442  * (because to the MF==0 already arrived */
443  if (valid) {
444  LWIP_ASSERT("sanity check", ipr->p != NULL);
445  LWIP_ASSERT("sanity check",
446  ((struct ip_reass_helper*)ipr->p->payload) != iprh);
447  LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
448  iprh->next_pbuf == NULL);
449  LWIP_ASSERT("validate_datagram:datagram end!=datagram len",
450  iprh->end == ipr->datagram_len);
451  }
452  }
453  }
454  /* If valid is 0 here, there are some fragments missing in the middle
455  * (since MF == 0 has already arrived). Such datagrams simply time out if
456  * no more fragments are received... */
457  return valid;
458  }
459  /* If we come here, not all fragments were received, yet! */
460  return 0; /* not yet valid! */
461 #if IP_REASS_CHECK_OVERLAP
462 freepbuf:
463  ip_reass_pbufcount -= pbuf_clen(new_p);
464  pbuf_free(new_p);
465  return 0;
466 #endif /* IP_REASS_CHECK_OVERLAP */
467 }
468 
475 struct pbuf *
476 ip_reass(struct pbuf *p)
477 {
478  struct pbuf *r;
479  struct ip_hdr *fraghdr;
480  struct ip_reassdata *ipr;
481  struct ip_reass_helper *iprh;
482  u16_t offset, len;
483  u8_t clen;
484  struct ip_reassdata *ipr_prev = NULL;
485 
486  IPFRAG_STATS_INC(ip_frag.recv);
488 
489  fraghdr = (struct ip_hdr*)p->payload;
490 
491  if ((IPH_HL(fraghdr) * 4) != IP_HLEN) {
492  LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: IP options currently not supported!\n"));
493  IPFRAG_STATS_INC(ip_frag.err);
494  goto nullreturn;
495  }
496 
497  offset = (ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) * 8;
498  len = ntohs(IPH_LEN(fraghdr)) - IPH_HL(fraghdr) * 4;
499 
500  /* Check if we are allowed to enqueue more datagrams. */
501  clen = pbuf_clen(p);
502  if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
503 #if IP_REASS_FREE_OLDEST
504  if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
505  ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
506 #endif /* IP_REASS_FREE_OLDEST */
507  {
508  /* No datagram could be freed and still too many pbufs enqueued */
509  LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
510  ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
511  IPFRAG_STATS_INC(ip_frag.memerr);
512  /* @todo: send ICMP time exceeded here? */
513  /* drop this pbuf */
514  goto nullreturn;
515  }
516  }
517 
518  /* Look for the datagram the fragment belongs to in the current datagram queue,
519  * remembering the previous in the queue for later dequeueing. */
520  for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
521  /* Check if the incoming fragment matches the one currently present
522  in the reassembly buffer. If so, we proceed with copying the
523  fragment into the buffer. */
524  if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
525  LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass: matching previous fragment ID=%"X16_F"\n",
526  ntohs(IPH_ID(fraghdr))));
527  IPFRAG_STATS_INC(ip_frag.cachehit);
528  break;
529  }
530  ipr_prev = ipr;
531  }
532 
533  if (ipr == NULL) {
534  /* Enqueue a new datagram into the datagram queue */
535  ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
536  /* Bail if unable to enqueue */
537  if(ipr == NULL) {
538  goto nullreturn;
539  }
540  } else {
541  if (((ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
542  ((ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
543  /* ipr->iphdr is not the header from the first fragment, but fraghdr is
544  * -> copy fraghdr into ipr->iphdr since we want to have the header
545  * of the first fragment (for ICMP time exceeded and later, for copying
546  * all options, if supported)*/
547  SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
548  }
549  }
550  /* Track the current number of pbufs current 'in-flight', in order to limit
551  the number of fragments that may be enqueued at any one time */
552  ip_reass_pbufcount += clen;
553 
554  /* At this point, we have either created a new entry or pointing
555  * to an existing one */
556 
557  /* check for 'no more fragments', and update queue entry*/
558  if ((IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0) {
559  ipr->flags |= IP_REASS_FLAG_LASTFRAG;
560  ipr->datagram_len = offset + len;
562  ("ip_reass: last fragment seen, total len %"S16_F"\n",
563  ipr->datagram_len));
564  }
565  /* find the right place to insert this pbuf */
566  /* @todo: trim pbufs if fragments are overlapping */
567  if (ip_reass_chain_frag_into_datagram_and_validate(ipr, p)) {
568  /* the totally last fragment (flag more fragments = 0) was received at least
569  * once AND all fragments are received */
570  ipr->datagram_len += IP_HLEN;
571 
572  /* save the second pbuf before copying the header over the pointer */
573  r = ((struct ip_reass_helper*)ipr->p->payload)->next_pbuf;
574 
575  /* copy the original ip header back to the first pbuf */
576  fraghdr = (struct ip_hdr*)(ipr->p->payload);
577  SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
578  IPH_LEN_SET(fraghdr, htons(ipr->datagram_len));
579  IPH_OFFSET_SET(fraghdr, 0);
580  IPH_CHKSUM_SET(fraghdr, 0);
581  /* @todo: do we need to set calculate the correct checksum? */
582  IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
583 
584  p = ipr->p;
585 
586  /* chain together the pbufs contained within the reass_data list. */
587  while(r != NULL) {
588  iprh = (struct ip_reass_helper*)r->payload;
589 
590  /* hide the ip header for every succeding fragment */
591  pbuf_header(r, -IP_HLEN);
592  pbuf_cat(p, r);
593  r = iprh->next_pbuf;
594  }
595  /* release the sources allocate for the fragment queue entry */
596  ip_reass_dequeue_datagram(ipr, ipr_prev);
597 
598  /* and adjust the number of pbufs currently queued for reassembly. */
599  ip_reass_pbufcount -= pbuf_clen(p);
600 
601  /* Return the pbuf chain */
602  return p;
603  }
604  /* the datagram is not (yet?) reassembled completely */
605  LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
606  return NULL;
607 
608 nullreturn:
609  LWIP_DEBUGF(IP_REASS_DEBUG,("ip_reass: nullreturn\n"));
610  IPFRAG_STATS_INC(ip_frag.drop);
611  pbuf_free(p);
612  return NULL;
613 }
614 #endif /* IP_REASSEMBLY */
615 
616 #if IP_FRAG
617 #if IP_FRAG_USES_STATIC_BUF
618 static u8_t buf[LWIP_MEM_ALIGN_SIZE(IP_FRAG_MAX_MTU + MEM_ALIGNMENT - 1)];
619 #else /* IP_FRAG_USES_STATIC_BUF */
620 
621 #if !LWIP_NETIF_TX_SINGLE_PBUF
622 
623 static struct pbuf_custom_ref*
624 ip_frag_alloc_pbuf_custom_ref(void)
625 {
626  return (struct pbuf_custom_ref*)memp_malloc(MEMP_FRAG_PBUF);
627 }
628 
630 static void
631 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref* p)
632 {
633  LWIP_ASSERT("p != NULL", p != NULL);
634  memp_free(MEMP_FRAG_PBUF, p);
635 }
636 
639 static void
640 ipfrag_free_pbuf_custom(struct pbuf *p)
641 {
642  struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref*)p;
643  LWIP_ASSERT("pcr != NULL", pcr != NULL);
644  LWIP_ASSERT("pcr == p", (void*)pcr == (void*)p);
645  if (pcr->original != NULL) {
646  pbuf_free(pcr->original);
647  }
648  ip_frag_free_pbuf_custom_ref(pcr);
649 }
650 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
651 #endif /* IP_FRAG_USES_STATIC_BUF */
652 
666 err_t
667 ip_frag(struct pbuf *p, struct netif *netif, ip_addr_t *dest)
668 {
669  struct pbuf *rambuf;
670 #if IP_FRAG_USES_STATIC_BUF
671  struct pbuf *header;
672 #else
673 #if !LWIP_NETIF_TX_SINGLE_PBUF
674  struct pbuf *newpbuf;
675 #endif
676  struct ip_hdr *original_iphdr;
677 #endif
678  struct ip_hdr *iphdr;
679  u16_t nfb;
680  u16_t left, cop;
681  u16_t mtu = netif->mtu;
682  u16_t ofo, omf;
683  u16_t last;
684  u16_t poff = IP_HLEN;
685  u16_t tmp;
686 #if !IP_FRAG_USES_STATIC_BUF && !LWIP_NETIF_TX_SINGLE_PBUF
687  u16_t newpbuflen = 0;
688  u16_t left_to_copy;
689 #endif
690 
691  /* Get a RAM based MTU sized pbuf */
692 #if IP_FRAG_USES_STATIC_BUF
693  /* When using a static buffer, we use a PBUF_REF, which we will
694  * use to reference the packet (without link header).
695  * Layer and length is irrelevant.
696  */
697  rambuf = pbuf_alloc(PBUF_LINK, 0, PBUF_REF);
698  if (rambuf == NULL) {
699  LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc(PBUF_LINK, 0, PBUF_REF) failed\n"));
700  return ERR_MEM;
701  }
702  rambuf->tot_len = rambuf->len = mtu;
703  rambuf->payload = LWIP_MEM_ALIGN((void *)buf);
704 
705  /* Copy the IP header in it */
706  iphdr = (struct ip_hdr *)rambuf->payload;
707  SMEMCPY(iphdr, p->payload, IP_HLEN);
708 #else /* IP_FRAG_USES_STATIC_BUF */
709  original_iphdr = (struct ip_hdr *)p->payload;
710  iphdr = original_iphdr;
711 #endif /* IP_FRAG_USES_STATIC_BUF */
712 
713  /* Save original offset */
714  tmp = ntohs(IPH_OFFSET(iphdr));
715  ofo = tmp & IP_OFFMASK;
716  omf = tmp & IP_MF;
717 
718  left = p->tot_len - IP_HLEN;
719 
720  nfb = (mtu - IP_HLEN) / 8;
721 
722  while (left) {
723  last = (left <= mtu - IP_HLEN);
724 
725  /* Set new offset and MF flag */
726  tmp = omf | (IP_OFFMASK & (ofo));
727  if (!last) {
728  tmp = tmp | IP_MF;
729  }
730 
731  /* Fill this fragment */
732  cop = last ? left : nfb * 8;
733 
734 #if IP_FRAG_USES_STATIC_BUF
735  poff += pbuf_copy_partial(p, (u8_t*)iphdr + IP_HLEN, cop, poff);
736 #else /* IP_FRAG_USES_STATIC_BUF */
737 #if LWIP_NETIF_TX_SINGLE_PBUF
738  rambuf = pbuf_alloc(PBUF_IP, cop, PBUF_RAM);
739  if (rambuf == NULL) {
740  return ERR_MEM;
741  }
742  LWIP_ASSERT("this needs a pbuf in one piece!",
743  (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
744  poff += pbuf_copy_partial(p, rambuf->payload, cop, poff);
745  /* make room for the IP header */
746  if(pbuf_header(rambuf, IP_HLEN)) {
747  pbuf_free(rambuf);
748  return ERR_MEM;
749  }
750  /* fill in the IP header */
751  SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
752  iphdr = rambuf->payload;
753 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
754  /* When not using a static buffer, create a chain of pbufs.
755  * The first will be a PBUF_RAM holding the link and IP header.
756  * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
757  * but limited to the size of an mtu.
758  */
759  rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
760  if (rambuf == NULL) {
761  return ERR_MEM;
762  }
763  LWIP_ASSERT("this needs a pbuf in one piece!",
764  (p->len >= (IP_HLEN)));
765  SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
766  iphdr = (struct ip_hdr *)rambuf->payload;
767 
768  /* Can just adjust p directly for needed offset. */
769  p->payload = (u8_t *)p->payload + poff;
770  p->len -= poff;
771 
772  left_to_copy = cop;
773  while (left_to_copy) {
774  struct pbuf_custom_ref *pcr;
775  newpbuflen = (left_to_copy < p->len) ? left_to_copy : p->len;
776  /* Is this pbuf already empty? */
777  if (!newpbuflen) {
778  p = p->next;
779  continue;
780  }
781  pcr = ip_frag_alloc_pbuf_custom_ref();
782  if (pcr == NULL) {
783  pbuf_free(rambuf);
784  return ERR_MEM;
785  }
786  /* Mirror this pbuf, although we might not need all of it. */
787  newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc, p->payload, newpbuflen);
788  if (newpbuf == NULL) {
789  ip_frag_free_pbuf_custom_ref(pcr);
790  pbuf_free(rambuf);
791  return ERR_MEM;
792  }
793  pbuf_ref(p);
794  pcr->original = p;
795  pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
796 
797  /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
798  * so that it is removed when pbuf_dechain is later called on rambuf.
799  */
800  pbuf_cat(rambuf, newpbuf);
801  left_to_copy -= newpbuflen;
802  if (left_to_copy) {
803  p = p->next;
804  }
805  }
806  poff = newpbuflen;
807 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
808 #endif /* IP_FRAG_USES_STATIC_BUF */
809 
810  /* Correct header */
811  IPH_OFFSET_SET(iphdr, htons(tmp));
812  IPH_LEN_SET(iphdr, htons(cop + IP_HLEN));
813  IPH_CHKSUM_SET(iphdr, 0);
814  IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
815 
816 #if IP_FRAG_USES_STATIC_BUF
817  if (last) {
818  pbuf_realloc(rambuf, left + IP_HLEN);
819  }
820 
821  /* This part is ugly: we alloc a RAM based pbuf for
822  * the link level header for each chunk and then
823  * free it.A PBUF_ROM style pbuf for which pbuf_header
824  * worked would make things simpler.
825  */
826  header = pbuf_alloc(PBUF_LINK, 0, PBUF_RAM);
827  if (header != NULL) {
828  pbuf_chain(header, rambuf);
829  netif->output(netif, header, dest);
830  IPFRAG_STATS_INC(ip_frag.xmit);
832  pbuf_free(header);
833  } else {
834  LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_frag: pbuf_alloc() for header failed\n"));
835  pbuf_free(rambuf);
836  return ERR_MEM;
837  }
838 #else /* IP_FRAG_USES_STATIC_BUF */
839  /* No need for separate header pbuf - we allowed room for it in rambuf
840  * when allocated.
841  */
842  netif->output(netif, rambuf, dest);
843  IPFRAG_STATS_INC(ip_frag.xmit);
844 
845  /* Unfortunately we can't reuse rambuf - the hardware may still be
846  * using the buffer. Instead we free it (and the ensuing chain) and
847  * recreate it next time round the loop. If we're lucky the hardware
848  * will have already sent the packet, the free will really free, and
849  * there will be zero memory penalty.
850  */
851 
852  pbuf_free(rambuf);
853 #endif /* IP_FRAG_USES_STATIC_BUF */
854  left -= cop;
855  ofo += nfb;
856  }
857 #if IP_FRAG_USES_STATIC_BUF
858  pbuf_free(rambuf);
859 #endif /* IP_FRAG_USES_STATIC_BUF */
861  return ERR_OK;
862 }
863 #endif /* IP_FRAG */