uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
e_pow.c
Go to the documentation of this file.
1 /*
2  * ====================================================
3  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Permission to use, copy, modify, and distribute this
6  * software is freely granted, provided that this notice
7  * is preserved.
8  * ====================================================
9  */
10 
11 /* __ieee754_pow(x,y) return x**y
12  *
13  * n
14  * Method: Let x = 2 * (1+f)
15  * 1. Compute and return log2(x) in two pieces:
16  * log2(x) = w1 + w2,
17  * where w1 has 53-24 = 29 bit trailing zeros.
18  * 2. Perform y*log2(x) = n+y' by simulating muti-precision
19  * arithmetic, where |y'|<=0.5.
20  * 3. Return x**y = 2**n*exp(y'*log2)
21  *
22  * Special cases:
23  * 1. (anything) ** 0 is 1
24  * 2. (anything) ** 1 is itself
25  * 3. (anything) ** NAN is NAN
26  * 4. NAN ** (anything except 0) is NAN
27  * 5. +-(|x| > 1) ** +INF is +INF
28  * 6. +-(|x| > 1) ** -INF is +0
29  * 7. +-(|x| < 1) ** +INF is +0
30  * 8. +-(|x| < 1) ** -INF is +INF
31  * 9. +-1 ** +-INF is NAN
32  * 10. +0 ** (+anything except 0, NAN) is +0
33  * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
34  * 12. +0 ** (-anything except 0, NAN) is +INF
35  * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
36  * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
37  * 15. +INF ** (+anything except 0,NAN) is +INF
38  * 16. +INF ** (-anything except 0,NAN) is +0
39  * 17. -INF ** (anything) = -0 ** (-anything)
40  * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
41  * 19. (-anything except 0 and inf) ** (non-integer) is NAN
42  *
43  * Accuracy:
44  * pow(x,y) returns x**y nearly rounded. In particular
45  * pow(integer,integer)
46  * always returns the correct integer provided it is
47  * representable.
48  *
49  * Constants :
50  * The hexadecimal values are the intended ones for the following
51  * constants. The decimal values may be used, provided that the
52  * compiler will convert from decimal to binary accurately enough
53  * to produce the hexadecimal values shown.
54  */
55 
56 #include "fdlibm.h"
57 
58 #ifdef __STDC__
59 static const double
60 #else
61 static double
62 #endif
63 bp[] = {1.0, 1.5,},
64 dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
65 dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
66 zero = 0.0,
67 one = 1.0,
68 two = 2.0,
69 two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
70 huge = 1.0e300,
71 tiny = 1.0e-300,
72  /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
73 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
74 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
75 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
76 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
77 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
78 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
79 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
80 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
81 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
82 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
83 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
84 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
85 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
86 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
87 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
88 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
89 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
90 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
91 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
92 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
93 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
94 
95 #ifdef __STDC__
96  double __ieee754_pow(double x, double y)
97 #else
98  double __ieee754_pow(x,y)
99  double x, y;
100 #endif
101 {
102  double z,ax,z_h,z_l,p_h,p_l;
103  double y1,t1,t2,r,s,t,u,v,w;
104  int /*i0,i1,*/i,j,k,yisint,n;
105  int hx,hy,ix,iy;
106  unsigned lx,ly;
107 
108  /*i0 = ((*(int*)&one)>>29)^1; i1=1-i0;*/
109  hx = __HI(x); lx = __LO(x);
110  hy = __HI(y); ly = __LO(y);
111  ix = hx&0x7fffffff; iy = hy&0x7fffffff;
112 
113  /* y==zero: x**0 = 1 */
114  if((iy|ly)==0) return one;
115 
116  /* +-NaN return x+y */
117  if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
118  iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
119  return x+y;
120 
121  /* determine if y is an odd int when x < 0
122  * yisint = 0 ... y is not an integer
123  * yisint = 1 ... y is an odd int
124  * yisint = 2 ... y is an even int
125  */
126  yisint = 0;
127  if(hx<0) {
128  if(iy>=0x43400000) yisint = 2; /* even integer y */
129  else if(iy>=0x3ff00000) {
130  k = (iy>>20)-0x3ff; /* exponent */
131  if(k>20) {
132  j = ly>>(52-k);
133  if((j<<(52-k))==ly) yisint = 2-(j&1);
134  } else if(ly==0) {
135  j = iy>>(20-k);
136  if((j<<(20-k))==iy) yisint = 2-(j&1);
137  }
138  }
139  }
140 
141  /* special value of y */
142  if(ly==0) {
143  if (iy==0x7ff00000) { /* y is +-inf */
144  if(((ix-0x3ff00000)|lx)==0)
145  return y - y; /* inf**+-1 is NaN */
146  else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
147  return (hy>=0)? y: zero;
148  else /* (|x|<1)**-,+inf = inf,0 */
149  return (hy<0)?-y: zero;
150  }
151  if(iy==0x3ff00000) { /* y is +-1 */
152  if(hy<0) return one/x; else return x;
153  }
154  if(hy==0x40000000) return x*x; /* y is 2 */
155  if(hy==0x3fe00000) { /* y is 0.5 */
156  if(hx>=0) /* x >= +0 */
157  return sqrt(x);
158  }
159  }
160 
161  ax = fabs(x);
162  /* special value of x */
163  if(lx==0) {
164  if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
165  z = ax; /*x is +-0,+-inf,+-1*/
166  if(hy<0) z = one/z; /* z = (1/|x|) */
167  if(hx<0) {
168  if(((ix-0x3ff00000)|yisint)==0) {
169  z = (z-z)/(z-z); /* (-1)**non-int is NaN */
170  } else if(yisint==1)
171  z = -z; /* (x<0)**odd = -(|x|**odd) */
172  }
173  return z;
174  }
175  }
176 
177  n = (hx>>31)+1;
178 
179  /* (x<0)**(non-int) is NaN */
180  if((n|yisint)==0) return (x-x)/(x-x);
181 
182  s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
183  if((n|(yisint-1))==0) s = -one;/* (-ve)**(odd int) */
184 
185  /* |y| is huge */
186  if(iy>0x41e00000) { /* if |y| > 2**31 */
187  if(iy>0x43f00000){ /* if |y| > 2**64, must o/uflow */
188  if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
189  if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
190  }
191  /* over/underflow if x is not close to one */
192  if(ix<0x3fefffff) return (hy<0)? s*huge*huge:s*tiny*tiny;
193  if(ix>0x3ff00000) return (hy>0)? s*huge*huge:s*tiny*tiny;
194  /* now |1-x| is tiny <= 2**-20, suffice to compute
195  log(x) by x-x^2/2+x^3/3-x^4/4 */
196  t = ax-one; /* t has 20 trailing zeros */
197  w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
198  u = ivln2_h*t; /* ivln2_h has 21 sig. bits */
199  v = t*ivln2_l-w*ivln2;
200  t1 = u+v;
201  __LO(t1) = 0;
202  t2 = v-(t1-u);
203  } else {
204  double ss,s2,s_h,s_l,t_h,t_l;
205  n = 0;
206  /* take care subnormal number */
207  if(ix<0x00100000)
208  {ax *= two53; n -= 53; ix = __HI(ax); }
209  n += ((ix)>>20)-0x3ff;
210  j = ix&0x000fffff;
211  /* determine interval */
212  ix = j|0x3ff00000; /* normalize ix */
213  if(j<=0x3988E) k=0; /* |x|<sqrt(3/2) */
214  else if(j<0xBB67A) k=1; /* |x|<sqrt(3) */
215  else {k=0;n+=1;ix -= 0x00100000;}
216  __HI(ax) = ix;
217 
218  /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
219  u = ax-bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
220  v = one/(ax+bp[k]);
221  ss = u*v;
222  s_h = ss;
223  __LO(s_h) = 0;
224  /* t_h=ax+bp[k] High */
225  t_h = zero;
226  __HI(t_h)=((ix>>1)|0x20000000)+0x00080000+(k<<18);
227  t_l = ax - (t_h-bp[k]);
228  s_l = v*((u-s_h*t_h)-s_h*t_l);
229  /* compute log(ax) */
230  s2 = ss*ss;
231  r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
232  r += s_l*(s_h+ss);
233  s2 = s_h*s_h;
234  t_h = 3.0+s2+r;
235  __LO(t_h) = 0;
236  t_l = r-((t_h-3.0)-s2);
237  /* u+v = ss*(1+...) */
238  u = s_h*t_h;
239  v = s_l*t_h+t_l*ss;
240  /* 2/(3log2)*(ss+...) */
241  p_h = u+v;
242  __LO(p_h) = 0;
243  p_l = v-(p_h-u);
244  z_h = cp_h*p_h; /* cp_h+cp_l = 2/(3*log2) */
245  z_l = cp_l*p_h+p_l*cp+dp_l[k];
246  /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
247  t = (double)n;
248  t1 = (((z_h+z_l)+dp_h[k])+t);
249  __LO(t1) = 0;
250  t2 = z_l-(((t1-t)-dp_h[k])-z_h);
251  }
252 
253  /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
254  y1 = y;
255  __LO(y1) = 0;
256  p_l = (y-y1)*t1+y*t2;
257  p_h = y1*t1;
258  z = p_l+p_h;
259  j = __HI(z);
260  i = __LO(z);
261  if (j>=0x40900000) { /* z >= 1024 */
262  if(((j-0x40900000)|i)!=0) /* if z > 1024 */
263  return s*huge*huge; /* overflow */
264  else {
265  if(p_l+ovt>z-p_h) return s*huge*huge; /* overflow */
266  }
267  } else if((j&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
268  if(((j-0xc090cc00)|i)!=0) /* z < -1075 */
269  return s*tiny*tiny; /* underflow */
270  else {
271  if(p_l<=z-p_h) return s*tiny*tiny; /* underflow */
272  }
273  }
274  /*
275  * compute 2**(p_h+p_l)
276  */
277  i = j&0x7fffffff;
278  k = (i>>20)-0x3ff;
279  n = 0;
280  if(i>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
281  n = j+(0x00100000>>(k+1));
282  k = ((n&0x7fffffff)>>20)-0x3ff; /* new k for n */
283  t = zero;
284  __HI(t) = (n&~(0x000fffff>>k));
285  n = ((n&0x000fffff)|0x00100000)>>(20-k);
286  if(j<0) n = -n;
287  p_h -= t;
288  }
289  t = p_l+p_h;
290  __LO(t) = 0;
291  u = t*lg2_h;
292  v = (p_l-(t-p_h))*lg2+t*lg2_l;
293  z = u+v;
294  w = v-(z-u);
295  t = z*z;
296  t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
297  r = (z*t1)/(t1-two)-(w+z*w);
298  z = one-(r-z);
299  j = __HI(z);
300  j += (n<<20);
301  if((j>>20)<=0) z = scalbn(z,n); /* subnormal output */
302  else __HI(z) += (n<<20);
303  return s*z;
304 }