uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
e_log.c
Go to the documentation of this file.
1 
2 /* @(#)e_log.c 1.4 96/03/07 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* __ieee754_log(x)
15  * Return the logrithm of x
16  *
17  * Method :
18  * 1. Argument Reduction: find k and f such that
19  * x = 2^k * (1+f),
20  * where sqrt(2)/2 < 1+f < sqrt(2) .
21  *
22  * 2. Approximation of log(1+f).
23  * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
24  * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
25  * = 2s + s*R
26  * We use a special Remes algorithm on [0,0.1716] to generate
27  * a polynomial of degree 14 to approximate R The maximum error
28  * of this polynomial approximation is bounded by 2**-58.45. In
29  * other words,
30  * 2 4 6 8 10 12 14
31  * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
32  * (the values of Lg1 to Lg7 are listed in the program)
33  * and
34  * | 2 14 | -58.45
35  * | Lg1*s +...+Lg7*s - R(z) | <= 2
36  * | |
37  * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
38  * In order to guarantee error in log below 1ulp, we compute log
39  * by
40  * log(1+f) = f - s*(f - R) (if f is not too large)
41  * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
42  *
43  * 3. Finally, log(x) = k*ln2 + log(1+f).
44  * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
45  * Here ln2 is split into two floating point number:
46  * ln2_hi + ln2_lo,
47  * where n*ln2_hi is always exact for |n| < 2000.
48  *
49  * Special cases:
50  * log(x) is NaN with signal if x < 0 (including -INF) ;
51  * log(+INF) is +INF; log(0) is -INF with signal;
52  * log(NaN) is that NaN with no signal.
53  *
54  * Accuracy:
55  * according to an error analysis, the error is always less than
56  * 1 ulp (unit in the last place).
57  *
58  * Constants:
59  * The hexadecimal values are the intended ones for the following
60  * constants. The decimal values may be used, provided that the
61  * compiler will convert from decimal to binary accurately enough
62  * to produce the hexadecimal values shown.
63  */
64 
65 #include "fdlibm.h"
66 
67 #ifdef __STDC__
68 static const double
69 #else
70 static double
71 #endif
72 ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
73 ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */
74 two54 = 1.80143985094819840000e+16, /* 43500000 00000000 */
75 Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
76 Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
77 Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
78 Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
79 Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
80 Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
81 Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
82 
83 static double zero = 0.0;
84 
85 #ifdef __STDC__
86  double __ieee754_log(double x)
87 #else
88  double __ieee754_log(x)
89  double x;
90 #endif
91 {
92  double hfsq,f,s,z,R,w,t1,t2,dk;
93  int k,hx,i,j;
94  unsigned lx;
95 
96  hx = __HI(x); /* high word of x */
97  lx = __LO(x); /* low word of x */
98 
99  k=0;
100  if (hx < 0x00100000) { /* x < 2**-1022 */
101  if (((hx&0x7fffffff)|lx)==0)
102  return -two54/zero; /* log(+-0)=-inf */
103  if (hx<0) return (x-x)/zero; /* log(-#) = NaN */
104  k -= 54; x *= two54; /* subnormal number, scale up x */
105  hx = __HI(x); /* high word of x */
106  }
107  if (hx >= 0x7ff00000) return x+x;
108  k += (hx>>20)-1023;
109  hx &= 0x000fffff;
110  i = (hx+0x95f64)&0x100000;
111  __HI(x) = hx|(i^0x3ff00000); /* normalize x or x/2 */
112  k += (i>>20);
113  f = x-1.0;
114  if((0x000fffff&(2+hx))<3) { /* |f| < 2**-20 */
115  if(f==zero) { if(k==0) return zero; else {dk=(double)k;
116  return dk*ln2_hi+dk*ln2_lo;}}
117  R = f*f*(0.5-0.33333333333333333*f);
118  if(k==0) return f-R; else {dk=(double)k;
119  return dk*ln2_hi-((R-dk*ln2_lo)-f);}
120  }
121  s = f/(2.0+f);
122  dk = (double)k;
123  z = s*s;
124  i = hx-0x6147a;
125  w = z*z;
126  j = 0x6b851-hx;
127  t1= w*(Lg2+w*(Lg4+w*Lg6));
128  t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
129  i |= j;
130  R = t2+t1;
131  if(i>0) {
132  hfsq=0.5*f*f;
133  if(k==0) return f-(hfsq-s*(hfsq+R)); else
134  return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
135  } else {
136  if(k==0) return f-s*(f-R); else
137  return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
138  }
139 }