uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
e_hypot.c
Go to the documentation of this file.
1 
2 /* @(#)e_hypot.c 1.3 95/01/18 */
3 /*
4  * ====================================================
5  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Developed at SunSoft, a Sun Microsystems, Inc. business.
8  * Permission to use, copy, modify, and distribute this
9  * software is freely granted, provided that this notice
10  * is preserved.
11  * ====================================================
12  */
13 
14 /* __ieee754_hypot(x,y)
15  *
16  * Method :
17  * If (assume round-to-nearest) z=x*x+y*y
18  * has error less than sqrt(2)/2 ulp, than
19  * sqrt(z) has error less than 1 ulp (exercise).
20  *
21  * So, compute sqrt(x*x+y*y) with some care as
22  * follows to get the error below 1 ulp:
23  *
24  * Assume x>y>0;
25  * (if possible, set rounding to round-to-nearest)
26  * 1. if x > 2y use
27  * x1*x1+(y*y+(x2*(x+x1))) for x*x+y*y
28  * where x1 = x with lower 32 bits cleared, x2 = x-x1; else
29  * 2. if x <= 2y use
30  * t1*y1+((x-y)*(x-y)+(t1*y2+t2*y))
31  * where t1 = 2x with lower 32 bits cleared, t2 = 2x-t1,
32  * y1= y with lower 32 bits chopped, y2 = y-y1.
33  *
34  * NOTE: scaling may be necessary if some argument is too
35  * large or too tiny
36  *
37  * Special cases:
38  * hypot(x,y) is INF if x or y is +INF or -INF; else
39  * hypot(x,y) is NAN if x or y is NAN.
40  *
41  * Accuracy:
42  * hypot(x,y) returns sqrt(x^2+y^2) with error less
43  * than 1 ulps (units in the last place)
44  */
45 
46 #include "fdlibm.h"
47 
48 #ifdef __STDC__
49  double __ieee754_hypot(double x, double y)
50 #else
51  double __ieee754_hypot(x,y)
52  double x, y;
53 #endif
54 {
55  double a=x,b=y,t1,t2,y1,y2,w;
56  int j,k,ha,hb;
57 
58  ha = __HI(x)&0x7fffffff; /* high word of x */
59  hb = __HI(y)&0x7fffffff; /* high word of y */
60  if(hb > ha) {a=y;b=x;j=ha; ha=hb;hb=j;} else {a=x;b=y;}
61  __HI(a) = ha; /* a <- |a| */
62  __HI(b) = hb; /* b <- |b| */
63  if((ha-hb)>0x3c00000) {return a+b;} /* x/y > 2**60 */
64  k=0;
65  if(ha > 0x5f300000) { /* a>2**500 */
66  if(ha >= 0x7ff00000) { /* Inf or NaN */
67  w = a+b; /* for sNaN */
68  if(((ha&0xfffff)|__LO(a))==0) w = a;
69  if(((hb^0x7ff00000)|__LO(b))==0) w = b;
70  return w;
71  }
72  /* scale a and b by 2**-600 */
73  ha -= 0x25800000; hb -= 0x25800000; k += 600;
74  __HI(a) = ha;
75  __HI(b) = hb;
76  }
77  if(hb < 0x20b00000) { /* b < 2**-500 */
78  if(hb <= 0x000fffff) { /* subnormal b or 0 */
79  if((hb|(__LO(b)))==0) return a;
80  t1=0;
81  __HI(t1) = 0x7fd00000; /* t1=2^1022 */
82  b *= t1;
83  a *= t1;
84  k -= 1022;
85  } else { /* scale a and b by 2^600 */
86  ha += 0x25800000; /* a *= 2^600 */
87  hb += 0x25800000; /* b *= 2^600 */
88  k -= 600;
89  __HI(a) = ha;
90  __HI(b) = hb;
91  }
92  }
93  /* medium size a and b */
94  w = a-b;
95  if (w>b) {
96  t1 = 0;
97  __HI(t1) = ha;
98  t2 = a-t1;
99  w = sqrt(t1*t1-(b*(-b)-t2*(a+t1)));
100  } else {
101  a = a+a;
102  y1 = 0;
103  __HI(y1) = hb;
104  y2 = b - y1;
105  t1 = 0;
106  __HI(t1) = ha+0x00100000;
107  t2 = a - t1;
108  w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
109  }
110  if(k!=0) {
111  t1 = 1.0;
112  __HI(t1) += (k<<20);
113  return t1*w;
114  } else return w;
115 }