uc-sdk
 All Classes Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
e_exp.c
Go to the documentation of this file.
1 
2 /* @(#)e_exp.c 1.6 04/04/22 */
3 /*
4  * ====================================================
5  * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
6  *
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 
13 /* __ieee754_exp(x)
14  * Returns the exponential of x.
15  *
16  * Method
17  * 1. Argument reduction:
18  * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
19  * Given x, find r and integer k such that
20  *
21  * x = k*ln2 + r, |r| <= 0.5*ln2.
22  *
23  * Here r will be represented as r = hi-lo for better
24  * accuracy.
25  *
26  * 2. Approximation of exp(r) by a special rational function on
27  * the interval [0,0.34658]:
28  * Write
29  * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
30  * We use a special Remes algorithm on [0,0.34658] to generate
31  * a polynomial of degree 5 to approximate R. The maximum error
32  * of this polynomial approximation is bounded by 2**-59. In
33  * other words,
34  * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
35  * (where z=r*r, and the values of P1 to P5 are listed below)
36  * and
37  * | 5 | -59
38  * | 2.0+P1*z+...+P5*z - R(z) | <= 2
39  * | |
40  * The computation of exp(r) thus becomes
41  * 2*r
42  * exp(r) = 1 + -------
43  * R - r
44  * r*R1(r)
45  * = 1 + r + ----------- (for better accuracy)
46  * 2 - R1(r)
47  * where
48  * 2 4 10
49  * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
50  *
51  * 3. Scale back to obtain exp(x):
52  * From step 1, we have
53  * exp(x) = 2^k * exp(r)
54  *
55  * Special cases:
56  * exp(INF) is INF, exp(NaN) is NaN;
57  * exp(-INF) is 0, and
58  * for finite argument, only exp(0)=1 is exact.
59  *
60  * Accuracy:
61  * according to an error analysis, the error is always less than
62  * 1 ulp (unit in the last place).
63  *
64  * Misc. info.
65  * For IEEE double
66  * if x > 7.09782712893383973096e+02 then exp(x) overflow
67  * if x < -7.45133219101941108420e+02 then exp(x) underflow
68  *
69  * Constants:
70  * The hexadecimal values are the intended ones for the following
71  * constants. The decimal values may be used, provided that the
72  * compiler will convert from decimal to binary accurately enough
73  * to produce the hexadecimal values shown.
74  */
75 
76 #include "fdlibm.h"
77 
78 #ifdef __STDC__
79 static const double
80 #else
81 static double
82 #endif
83 one = 1.0,
84 halF[2] = {0.5,-0.5,},
85 huge = 1.0e+300,
86 twom1000= 9.33263618503218878990e-302, /* 2**-1000=0x01700000,0*/
87 o_threshold= 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
88 u_threshold= -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
89 ln2HI[2] ={ 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
90  -6.93147180369123816490e-01,},/* 0xbfe62e42, 0xfee00000 */
91 ln2LO[2] ={ 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
92  -1.90821492927058770002e-10,},/* 0xbdea39ef, 0x35793c76 */
93 invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
94 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
95 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
96 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
97 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
98 P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
99 
100 
101 #ifdef __STDC__
102  double __ieee754_exp(double x) /* default IEEE double exp */
103 #else
104  double __ieee754_exp(x) /* default IEEE double exp */
105  double x;
106 #endif
107 {
108  double y,hi=0,lo=0,c,t;
109  int k=0,xsb;
110  unsigned hx;
111 
112  hx = __HI(x); /* high word of x */
113  xsb = (hx>>31)&1; /* sign bit of x */
114  hx &= 0x7fffffff; /* high word of |x| */
115 
116  /* filter out non-finite argument */
117  if(hx >= 0x40862E42) { /* if |x|>=709.78... */
118  if(hx>=0x7ff00000) {
119  if(((hx&0xfffff)|__LO(x))!=0)
120  return x+x; /* NaN */
121  else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
122  }
123  if(x > o_threshold) return huge*huge; /* overflow */
124  if(x < u_threshold) return twom1000*twom1000; /* underflow */
125  }
126 
127  /* argument reduction */
128  if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
129  if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
130  hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
131  } else {
132  k = (int)(invln2*x+halF[xsb]);
133  t = k;
134  hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
135  lo = t*ln2LO[0];
136  }
137  x = hi - lo;
138  }
139  else if(hx < 0x3e300000) { /* when |x|<2**-28 */
140  if(huge+x>one) return one+x;/* trigger inexact */
141  }
142  else k = 0;
143 
144  /* x is now in primary range */
145  t = x*x;
146  c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
147  if(k==0) return one-((x*c)/(c-2.0)-x);
148  else y = one-((lo-(x*c)/(2.0-c))-hi);
149  if(k >= -1021) {
150  __HI(y) += (k<<20); /* add k to y's exponent */
151  return y;
152  } else {
153  __HI(y) += ((k+1000)<<20);/* add k to y's exponent */
154  return y*twom1000;
155  }
156 }