
CD
Canvas Draw, A 2D Graphics Library
Version 5.2

CD (Canvas Draw) is a platform-independent graphics library. It is implemented in several platforms using native graphics libraries: Microsoft
Windows (GDI) and X-Windows (XLIB).

The library contains functions to support both vector and image applications, and the visualization surface can be either a window or a more
abstract surface, such as Image, Clipboard, Metafile, PS, and so on.

This work was developed at Tecgraf/PUC-Rio by means of the partnership with PETROBRAS/CENPES.

Project Management:

Antonio Escaño Scuri

Tecgraf - Computer Graphics Technology Group, PUC-Rio, Brazil
http://www.tecgraf.puc-rio.br/cd

Overview

CD is a platform-independent graphics library. It is implemented in several platforms using native graphics libraries: Microsoft Windows (GDI
and GDI+) and X-Windows (XLIB).

The library contains functions to support both vector and image applications, and the visualization surface can be either a canvas or a more
abstract surface, such as Clipboard, Metafile, PS, and so on.

To make the Application Programmers Interface (API) simple, all data are standard C types (int, double or char). Thus the application program
does not have to maintain parallel data structures to deal with the graphic library.

Furthermore, the list of parameters of the CD primitive functions contains only the geometrical descriptions of the objects (line, circle, text,
etc.). Where these objects should appear and what is the their color, thickness, etc. are defined as current state variables stored in the
visualization surfaces. That is, the library is visualization-surface oriented, meaning that all attributes are stored in each visualization surface.

CD is free software, can be used for public and commercial applications.

Availability

The library is available for several compilers:

� GCC and CC, in the UNIX environment
� Visual C++, Borland C++, Watcom C++ and GCC (Cygwin and MingW), in the Windows environment

The library is available for several operating systems:

� UNIX (SunOS, IRIX, AIX, FreeBSD and Linux)
� Microsoft Windows NT/2K/XP

Support

The official support mechanism is by e-mail, using cd@tecgraf.puc-rio.br. Before sending your message:

� Check if the reported behavior is not described in the user guide.
� Check if the reported behavior is not described in the specific driver characteristics.
� Check the History to see if your version is updated.
� Check the To Do list to see if your problem has already been reported.

After all of the above have been checked, report the problem, including in your message: function, element, driver, platform, and compiler.

We host the CD support features at SourceForge: http://sourceforge.net/projects/canvasdraw/. It provides us Mailing List, CVS Repository and
Downloads.

The discussion list is available at: http://lists.sourceforge.net/lists/listinfo/canvasdraw-users.
Source code, pre-compiled binaries and documentation can be downloaded at: http://sourceforge.net/project/showfiles.php?group_id=241317.
The CVS can be browsed at: http://canvasdraw.cvs.sourceforge.net/canvasdraw/.

If you want us to develop a specific feature for the library, Tecgraf is available for partnerships and cooperation. Please contact
tcg@tecgraf.puc-rio.br.

Lua documentation and resources can be found at http://www.lua.org/.

Credits

This work was developed at Tecgraf by means of the partnership with PETROBRAS/CENPES.

Library Authors:

Page 1 of 65

� Marcelo Gattass
� Luiz Henrique de Figueiredo
� Luiz Fernando Martha
� Antonio Scuri

Thanks to the people that worked and contributed to the library:

� Alexandre Ferreira
� André Derraik
� Camilo Freire
� Carlos Augusto Mendes
� Carlos Cassino
� Carlos Henrique Levy
� Carolina Alfaro
� Danilo Tuler
� Diego Fernandes Nehab
� Erick de Moura Ferreira
� Marcelo Cohen
� Milton Jonathan
� Pedro Miller
� Rafael Rieder
� Renato Borges
� Vinicius da Silva Almendra

We also thank the developers of the FreeType, libJPEG and Mesa libraries, for making the source code available, which helped us improve our
implementation of the Simulation driver and of the X-Windows driver. Thanks to Alan Richardson for the XVertex rotines. Thanks to Jason
Perkins for the Premake tool.

The CD distribution includes the FreeType library, this is a third party library not developed at Tecgraf. But its license is also free and have the
same freedom as the Tecgraf Library License. You can read the Free Type license and copyright in the file freetype.txt. FreeType is copyright
David Turner, Robert Wilhelm, and Werner Lemberg.

Mesa X-Windows utilities source code copyright Brian Paul. libJPEG quantization source code copyright Thomas G. Lane. XVertex rotines
source code copyright Alan Richardson.

Thanks for the SourceForge for hosting the support features. Thanks for the LuaForge team for previously hosting the support features for many
years.

CD is registered at the National Institute of Intellectual Property in Brazil (INPI) under the number 07571-1, and so it is protected against illegal
use. See the Tecgraf Library License for further usage information and Copyright.

Documentation

This library is available at http://www.tecgraf.puc-rio.br/cd.

The full documentation can be downloaded from the Download Files. The documentation is also available in Adobe Acrobat and Windows
HTML Help formats.

The HTML navigation uses the WebBook tool, available at http://www.tecgraf.puc-rio.br/webbook.

Tecgraf Library License

The Tecgraf products under this license are: IUP, CD and IM.

All the products under this license are free software: they can be used for both academic and commercial purposes at absolutely no cost. There
are no paperwork, no royalties, no GNU-like "copyleft" restrictions, either. Just download and use it. They are licensed under the terms of the
MIT license reproduced below, and so are compatible with GPL and also qualifies as Open Source software. They are not in the public domain,
PUC-Rio keeps their copyright. The legal details are below.

The spirit of this license is that you are free to use the libraries for any purpose at no cost without having to ask us. The only requirement is that
if you do use them, then you should give us credit by including the copyright notice below somewhere in your product or its documentation. A
nice, but optional, way to give us further credit is to include a Tecgraf logo and a link to our site in a web page for your product.

The libraries are designed, implemented and maintained by a team at Tecgraf/PUC-Rio in Brazil. The implementation is not derived from
licensed software. The library was developed by request of Petrobras. Petrobras permits Tecgraf to distribute the library under the conditions
here presented.

Copyright © 1994-2009 Tecgraf, PUC-Rio.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

Page 2 of 65

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Download

The download site for pre-compiled binaries, documentation and sources is at SourceForge:

http://sourceforge.net/project/showfiles.php?group_id=241317

Before downloading any precompiled binaries, you should read before the Tecgraf Library Download Tips.

Some other files are available directly at the CD download folder:

http://www.tecgraf.puc-rio.br/cd/download/

Tecgraf/PUC-Rio Library Download Tips

All the libraries were build using Tecmake. Please use it if you intend to recompile the sources. Tecmake can be found at
http://www.tecgraf.puc-rio.br/tecmake.

The IM files can be downloaded at http://sourceforge.net/project/showfiles.php?group_id=241318.
The CD files can be downloaded at http://sourceforge.net/project/showfiles.php?group_id=241317.
The IUP files can be downloaded at http://sourceforge.net/project/showfiles.php?group_id=241310.
The Lua files can be downloaded at http://luaforge.net/project/showfiles.php?group_id=110.

Build Configuration

Libraries and executables were built using speed optimization. In UNIX the dynamic libraries were NOT built with the -fpic parameter. In
MacOS X the dynamic libraries are in bundle format. The source code along with the "config.mak" files for Tecmake are also available.

The DLLs were built using the cdecl calling convention. This should be a problem for Visual Basic users.

In Visual C++ we use the single thread C Run Time Library for static libraries and the multi thread C RTL for DLLs. Because this is the default
in Visual Studio for new projects. Since Visual C++ 8, both use the multi thread C RTL.

Packaging

The package files available for download are named according to the platform where they were build.

In UNIX all strings are based in the result of the command "uname -a". The package name is a concatenation of the platform uname, the system
major version number and the system minor version number. Some times a suffix must be added to complement the name. The compiler used
is always gcc. Binaries for 64-bits receive the suffix: "_64". In Linux when there are different versions of gcc for the same uname, the platform
name is created adding the major version number of the compiler added as a suffix: "g3" for gcc 3 and "g4" for gcc 4.

In Windows the platform name is the compiler and its major version number.

All library packages (*_lib*) contains pre-compiled binaries for the specified platform and includes. Packages with "_bin" suffix contains
executables only.

The package name is a general reference for the platform. If you have the same platform it will work fine, but it may also work in similar
platforms.

Here are some examples of packages:

iup2_4_Linux26_lib.tar.gz = IUP 2.4 32-bits Libraries and Includes for Linux with Kernel version 2.6 built with gcc 3.
iup2_4_Linux26g4_64_bin.tar.gz = IUP 2.4 64-bits Executables for Linux with Kernel version 2.6 built with gcc 4.
iup2_4_Win32_vc8_lib.tar.gz = IUP 2.4 32-bits Static Libraries and Includes for Windows to use with Visual C++ 8 (2005).
iup2_4_Win32_dll9_lib.tar.gz = IUP 2.4 32-bits Dynamic Libraries (DLLs), stub libraries and Includes for Windows to use with Visual C++ 9
(2008).
iup2_4_Docs_html.tar.gz = IUP 2.4 documentation files in HTML format (the web site files can be browsed locally).
iup2_4_Win32_bin.tar.gz = IUP 2.4 32-bits Executables for Windows.

The documentation files are in HTML format. They do not include the CHM and PDF versions. These two files are provided as a separate
download, but they all have the same documentation.

Installation

For any platform we recommend you to create a folder to contain the third party libraries you download. Then just unpack the packages you
download in that folder. The packages already contains a directory structure that separates each library or toolkit. For example:

\mylibs\

 iup\

 bin\

 html\

Page 3 of 65

 include\

 lib\Linux26

 lib\Linux26g4_64

 lib\vc8

 src

 cd\

 im\

 lua5.1\

This structure will also made the process of building from sources more simple, since the projects and makefiles will assume this structure .

Usage

For makefiles use:

1) "-I/mylibs/iup/include" to find include files

2) "-L/mylibs/iup/lib/Linux26" to find library files

3) "-liup" to specify the library files

For IDEs the configuration involves the same 3 steps above, but each IDE has a different dialog. The IUP toolkit has a Guide for some IDEs:

Borland C++ BuilderX - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/cppbx.html
Code Blocks - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/codeblocks.html
Dev-C++ - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/dev-cpp.html
Eclipse for C++ - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/eclipse.html
Microsoft Visual C++ (Visual Studio 2003) - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc.html
Microsoft Visual C++ (Visual Studio 2005) - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/msvc8.html
Open Watcom - http://www.tecgraf.puc-rio.br/iup/en/ide_guide/owc.html

Available Platforms

The following platforms can be available:

AIX43 IBM AIX 4.3 (ppc) / gcc 2.95 / Motif 2.1

IRIX65 SGI IRIX 6.5 (mips) / gcc 3.0 / Motif 2.1

IRIX6465 SGI IRIX 6.5 (mips) / gcc 3.3 / Motif 1.2

Linux24 Red Hat 7.3 (x86) / Kernel 2.4 / gcc 2.95 / Open Motif 2.1

Linux24g3 CentOS 3.9 (x86) / Kernel 2.4 / gcc 3.2 / Open Motif 2.2
3

Linux24g3_64 Red Hat E.L. WS 3 (x64) (64 bits libraries) / Kernel 2.4 / gcc 3.2 / Open Motif 2.2
3

Linux26 CentOS 4.5 (x86) / Kernel 2.6 / gcc 3.4 / Open Motif 2.2
3

Linux26_64 CentOS 4.5 (x64) / Kernel 2.6 / gcc 3.4 / Open Motif 2.2
3

Linux26g4 Ubuntu 6.06 (x86) / Kernel 2.6 / gcc 4.0 / Open Motif 2.2
3

Linux26g4_64 Ubuntu 6.10 (x64) / Kernel 2.6 / gcc 4.1 / OpenMotif 2.2
3

Linux26g4ppc Ubuntu 7.10 (ppc) / Kernel 2.6 / gcc 4.1 / Open Motif 2.2
3

Linux26_ia64 Red Hat E.L. AS 4 (ia64) / Kernel 2.6 / gcc 3.4 / Open Motif 2.2
3

SunOS57 Sun Solaris 7 (sparc) / gcc 2.95 / Motif 2.1

SunOS58 Sun Solaris 8 (sparc) / gcc 3.4 / Motif 2.1

SunOS510x86 Sun Solaris 10 (x86) / gcc 3.3 / Motif 2.1

FreeBSD54 Free BSD 5.4 (x86) / gcc 3.4 / Open Motif 2.2
3

Darwin811 Mac OS X 10.4.11 (ppc) / Darwin Kernel Version 8.11 / gcc 4.0 / Open Motif 2.1

Darwin811x86 Mac OS X 10.4.11 (x86) / Darwin Kernel Version 8.11 / gcc 4.0 / Open Motif 2.1

Win32_vc6 Microsoft Visual C++ 6 (static RTL/single thread)

Win32_vc7
 Microsoft Visual C++ 7.1 (.NET 2003) (static RTL/single thread)
 Also compatible with Microsoft Visual C++ Toolkit 2003 -
 http://msdn.microsoft.com/visualc/vctoolkit2003/ ¹

Win32_vc8
 Microsoft Visual C++ 8.0 (2005) (static RTL/multithread)
 Also compatible with Microsoft Visual C++ 2005 Express Edition -
 http://msdn.microsoft.com/vstudio/express/visualc/ ¹

Win32_vc9
 Microsoft Visual C++ 9.0 (2008) (static RTL/multithread)
 Also compatible with Microsoft Visual C++ 2008 Express Edition -
 http://msdn.microsoft.com/vstudio/express/visualc/ ¹

Win32_dll6
 built using vc6, creates dependency with MSVCRT.DLL
 (either other libraries or new applications).

Win32_dll7
 built using vc7, creates dependency with MSVCR71.DLL
 (either other libraries or new applications).

Win32_dll8
 built using vc8, creates dependency with MSVCR80.DLL
 (either other libraries or new applications).

Win32_dll9
 built using vc9, creates dependency with MSVCR90.DLL
 (either other libraries or new applications).

Win64_vc8 Same as Win32_vc8 but for 64-bits systems using x64 standard.

Page 4 of 65

¹ - Notice that all the Windows compilers with links here are free to download and use.
² - Recently Borland removed the C++ Builder X from download. But if you bought a book that has the CD of the compiler, then it is still free to
use.
3
 - OpenMotif 2.2 is classified as 'experimental' by the Open Group.

CVS

The CVS repository is at SourceForge. It can also be interactively browsed at:

http://canvasdraw.cvs.sourceforge.net/canvasdraw/

To checkout use the module name "cd" and the CVSROOT:

:pserver:anonymous@canvasdraw.cvs.sourceforge.net:/cvsroot/canvasdraw

History of Changes

Version 5.2 (26/Jun/2008)

� New: functions CanvasGetVectorTextBox, CanvasGetVectorFontSize and CanvasVectorFontSize.
� Changed: the functions CanvasVectorText, CanvasText and CanvasGetTextSize now supports line breaks using '\n'.

CanvasMultiLineVectorText is now deprecated but kept for compatibility. IMPORTANT - VectorTextSize now uses the full line size.
� Changed: CD_DBUFFER now activates the buffered canvas before creating the image canvas. If size is 0 then uses 1 and avoid to fail

during creation.
� Changed: removed "lua5.1.so" dependency in UNIX.
� Fixed: CanvasText for CD_IMAGERGB driver when the foreground color has alpha.

Version 5.1.1 (15/Dec/2008)

� Fixed: CDLua binding functions canvas:foreground, canvas:setforeground, canvas:background and canvas:setbackground. Color was
being checked from the wrong position in the stack. They were reporting and invalid color when being used.

� Fixed: CDLua binding functions canvas:foreground and canvas:background when using cd.QUERY are value.

Version 5.1 (14/Oct/2008)

� New: CD_DEBUG driver.
� New: the "imlua_cd" library moved from IM to CD under the name "cdluaim". Only the initialization function name is changed.
� New: cdluacontextplus library so the "ContextPlus" base drivers (GDI+ and XRender) can be dinamically loaded using require.
� Changed: IMPORTANT - the "cdiup" and "cdluaiup" libraries moved from CD to IUP under the name "iupcd" and "iupluacd". But

headers and documentation remains on the CD package. Function names were NOT changed. This change eliminates a cross-dependency
that IUP and CD had, now only IUP depends on CD.

� Changed: IMPORTANT - renamed "cdgliplus" and "cdxrender" libraries to "cdcontextplus".
� Changed: IMPORTANT - removed the FreeType library files from the main library. They now are available as an additional library that

can be replaced by other FreeType distributions. You should now link with the "freetype6" library in Windows and with the "freetype"
library in UNIX (if not using GTK, freetype is already included in GTK). This change will avoid conflicts when using CD and GTK.

� Changed: IMPORTANT - removed the PDFLib library files from the cdpdf library. They now are available as an additional library that
can be replaced by other PDFLib distributions. You should now link with the "pdflib" library.

� Changed: IMPORTANT - the support services (Downloads, Mailing List and CVS) moved from LuaForge to SourceForge.
� Changed: Makefiles for UNIX now uses a compact version of Tecmake that does not need any installation, just type "make".
� Changed: All dll8 and dll9 DLLs now have a Manifest file that specifies the correct MSVCR*.DLL.
� Changed: improved CDLua parameter checking and error report.
� Changed: improved compatibility for font names in X and Win32.
� Changed: Copyright notice modified to reflect the registration at INPI (National Institute of Intellectual Property in Brazil). License

continues under the same terms.
� Changed: improved pattern and stipple resize in wdCanvasPattern and wdCanvasStipple.
� Changed: pattern creation in Win32 to a more faster method.
� Changed: optimized font search in X-Windows base driver for size variations.

Win64_vc9 Same as Win32_vc9 but for 64-bits systems using x64 standard.

Win64_dll8 Same as Win32_dll8 but for 64-bits systems using x64 standard.

Win64_dll9 Same as Win32_dll9 but for 64-bits systems using x64 standard.

Win32_gcc3 Cygwin gcc 3.4 (Depends on Cygwin DLL 1.5) - http://www.cygwin.com/ ¹

Win32_cygw15 Same as Win32_gcc3, but using the Cygwin Posix system

Win32_mingw3
 MingW gcc 3.4 - http://www.mingw.org/ ¹
 Also compatible with Dev-C++ - http://www.bloodshed.net/devcpp.html
 and with Code Blocks - http://www.codeblocks.org/ ¹

Win32_mingw4 MingW gcc 4.4 - http://www.mingw.org/ ¹

Win32_owc1 Open Watcom 1.5 - http://www.openwatcom.org/

Win32_bc56
 Borland C++ BuilderX 1.0 / Borland C++ 5.6 Compiler -
 http://www.borland.com/products/downloads/download_cbuilderx.html ¹,²
 (the C++ BuilderX IDE can also be configured to use mingw3 or gcc3 versions.)

Win32_bin Executables only for Windows NT/2000/XP

Win64_bin Same as Win32_bin but for 64-bits systems using the x64 standard

Win32_cygw15_bin Executables only for Windows NT/2000/XP, but using the Cygwin Posix system

Page 5 of 65

� Changed: the number of bits per pixel returned by the CD_PRINTER driver when the printer is a PDF Writer was 1, now we add a
workaround to return 24.

� Changed: improved the color convertion when drawing a RGB image in a CD_PRINTER canvas with 1 bpp (usually a laser printer).
� Changed: (UNDONE from 5.0) in Lua canvases are NOT garbage collected anymore. Since there can be different Lua canvases pointing

to the same canvas.
� Changed: font map in simulation driver is not case sensitive anymore.
� Changed: premake files are used now only internally and were removed from the distribution.
� Fixed: added missing CD_NO_OLD_INTERFACE definition on Linux makefiles.
� Fixed: attributes not being preserved after changing clipping or adding a new page in CD_PDF.
� Fixed: polygon clipping in CD_IMAGERGB driver when polygon is larger than the canvas.
� Fixed: cdCanvasVertex when adding two reference points with the same coordinates in a bezier.
� Fixed: client image zoom in CD_IMAGERGB driver.
� Fixed: text draw position and gettextsize in Xrender base driver.
� Fixed: double buffer driver invalid memory access when using the Xrender base driver.

Version 5.0 (26/Nov/2007)

� New: attributes "OPAQUE", "PATTERN" and "PDF" in the CD_PDF driver.
� New: XRender base driver.
� Changed: PDF Lite library updated to version "7.0.2".
� Changed: FreeType library updated to version "2.3.5".
� Changed: now using "(char*)CD_QUERY" as the parameter in cdCanvasNativeFont, it returns the current selected font in the common

format definition.
� Changed: avoid setting X-Windows color background when calling cdCanvasClear for NativeWindow driver. Now all X-Windows

drivers will use only XFillRectangle.
� Changed: in Lua canvases are now garbage collected.
� Changed: metatable names in Lua are now the same as the C struct names.
� Fixed: function cdlua_checkcanvas that affects the creation of the cd.DBUFFER canvas. Thanks to Martin Saerbeck.
� Fixed: vertical text alignment in PDF and PS drivers.
� Fixed: ascent and descent font dimensions in PDF driver.
� Fixed: check for mark size and font size when given size is 0.

Version 5.0 RC2 (09/Apr/2007)

� New: function cdCanvasInvertYAxis that will invert the given y coordinate even if the canvas is not internally inverted.
� Changed: PDF Lite library updated to version "7.0.0p3".
� Changed: FreeType library updated to version "2.2.1".
� Changed: In the new API cdCanvasFont you can specify partial parameters using NULL, -1 and 0 for typeface, style and size. When these

parameters are specified the current font parameter is used. For example, cdCanvasFont(NULL, -1, 10) will only change the font size.

Version 5.0 RC1 (08/Mar/2007)

� New: attribute HATCHBOXSIZE in CD_PDF driver, to control the hatch spacing.
� New: attribute ADDFONTMAP in simulation base driver to accept a map between a font name and a font file name.
� New: Pango Font Description string is now accepted in NativeFont and replace the previous CD format is most drivers.

INCOMPATIBILITY - If style is not used, most drivers had a format compatible with the new format. But please check your NativeFont
usage. The IUP format is still supported.

� New: API using canvas as a parameter. Old API still exists. Library is backward compatible with previous versions, but the documentation
shows only the new names. The new functions add a "Canvas" to the function prefix, for ex: the cdLine equivalent is cdCanvasLine. For
these functions cdActivate is not required. But cdCanvasActivate exists for special cases where the canvas must be updated if an external
factor was changed, like a window resize. To facilitate the migration to the new API use the definition CD_NO_OLD_INTERFACE to
exclude the old API definitions and check if you are using only the new functions.

� New: support for primitives using "double" floating point precision and not related to WC functions.
� New: "cd_canvas.hpp" header file which defines a C++ class cdCanvasC that wraps the cdCanvas structure API.
� New: ROTATE attribute in CD_PDF driver.
� New: binding Lua of the CD_PDF driver.
� New: support for alpha channel in CD_IMAGERGB driver. Also support for alpha in color coding in the CD_IMAGERGB driver

primitives.
� New: attribute ANTIALIAS in the CD_IMAGERGB driver. Text is always antialiased as before.
� New: implemented Chord primitive in simulation base driver.
� New: implemented CD_WINDING fill mode in the simulation base driver.
� New: implemented complex clipping regions in CD_IMAGERGB driver. Fixed polygon clipping and other clipping errors in the

CD_IMAGERGB driver.
� New: driver CD_DBUFFERRGB that uses the CD_IMAGERGB driver for double buffer, and can be a double buffer for any other driver

(CD_DBUFFER works only for Window based drivers).
� New: CD_PICTURE driver to store primitives and attributes in memory that can be played and resized in any other driver.
� New: functions to set color foreground and background without query support (cdCanvasSetForeground and cdCanvasSetBackground).

CD_QUERY conflicts with color RGBA=(255,255,255,255) (full transparent white).
� New: support for generic canvas transformations using Transform, TransformTranslate, TransformRotate and TransformScale

functions.
� New: attribute "GDI+" for all GDI+ based drivers that returns "1". So it can be detected if the driver uses the GDI+ base driver.
� Changed: INCOMPATIBILITY - removed clipping simulation from the simulation base driver. It is not possible anymore to simulate

clipping, only primitives can be simulated.
� Changed: canvas internal pointer allocation so it can be checked for valid canvas in all external API function calls.
� Changed: NativeFont("-d") to set also the foreground color from the color in the dialog, and initialize the font in the dialog with the

current selected font.
� Changed: In the new API cdCanvasFont changed the typeface parameter type from a small set of integer values to a more flexible string.
� Changed: all accented characters are now available in the default vector text font.
� Changed: all functions in the API now use "const" when applicable.

Page 6 of 65

� Changed: server image defintion from "void*" to "cdImage*". This will affect C++ applications that must update their code.
� Changed: removed cdGetClipPoly and wdGetClipPoly functions.
� Changed: UpdateYAxis now also returns the changed value.
� Changed: INCOMPATIBILITY - cdCallback definition used in RegisterCallback, called from Play. Replaced the "cdContext*" by a

"cdCanvas*". If you do not use the pointer it can be simply ignored.
� Changed: WC functions now are only client functions of the CD API.
� Changed: removed old support for Windows 9x.
� Changed: removed the cdInitGdiPlusIUP function and the "cdiupgdiplus" library. They are not necessary anymore. Althougth the

CD_IUP driver still works with GDI+ support.
� Changed: improved speed and precision of the bezier polygon of the simulation base driver.
� Changed: renamed distribution folder name from "cd/data" to "cd/etc".
� Changed: CD Lua for Lua 3 library name changed to include "3" as a suffix.
� Fixed: conversion from ANSI to ASCII in vector text fonts.
� Fixed: Sector primitive in simulation base driver.
� Fixed: deactivation of internal canvas in Double Buffer driver over a Native Windows driver for Win32.
� Fixed: EPS compatibility in PostScript driver.
� Fixed: the default values in cdCreateCanvas for CD_DGN, CD_DXF and CD_CGM.
� Fixed: Play for CD_EMF when data contains poly-polygons or poly-polylines.
� Fixed: LineWidth in WC when updating the size in pixels.
� Fixed: TextSize and FontDim in driver DXF.
� Fixed: Font in the X-Windows base driver, size parameter was incorrectly passed to the X-Windows. WARNING: the result font will

have a size different than previous CD versions in X-Windows.
� Fixed: Flush in CD_DBUFFER driver, it was affected by the write mode state of the buffered canvas.
� Fixed: WC tranformation update when the Window is invalid. Thanks to Marian Trifon.
� Fixed: polygon filling in simulation base driver.
� Fixed: invalid resample in PutImageRect* in GDI+ base driver cause a band with a mix of the background color appear on right and

bottom when image is zoomed in (larger than original size).

Version 4.4 (12/Dec/2005)

� New: CDLua for Lua 5. The CDLua for Lua 3 is now also totally compatible with the "cd." name space used in the CDLUA for Lua 5. So
the documentation now reflects only the new nomenclature although the old CDLua 3 names are still valid.

� New: attribute "WINDOWRGN" for the Native Windows and IUP drivers to set the shape of a window to the current complex clipping

region.
� New: cdlua_close function to release the memory allocated by the cdlua_open.

� New: "ROTATE" attribute for PS driver, GDI+ base driver and GDI base driver.

� New: CD_FILLSPLINE and CD_SPLINE parameters for cdBegin in GDI+ base driver.

� New: support for complex regions for clipping using: cdBox, cdSector, Polygons and cdText. New: parameter CD_REGION for

cdBegin to create the region, new parameter CD_CLIPREGION for cdClip to select the region for clipping. New: funtions to control

regions: cdPointInRegion, cdOffsetRegion, cdRegionBox and cdRegionCombineMode. Valid only for the Windows

GDI, GDI+ and X-Windows base drivers and their derived drives.
� New: mode for cdBegin, CD_BEZIER.

� New: filled primitive cdChord.

� New: polygon fill rule control using cdFillMode with CD_EVENODD (the default) and CD_WINDING parameters.

� New: line cap and line join styles using cdLineCap and cdLineJoin.

� New: typeface CD_NATIVE to indicate that a native font has been selected.

� New: custom line style using cdLineStyleDashes and cdLineStyle(CD_CUSTOM). This replaces the attribute

"USERLINESTYLE".

(All New:, when not specified the divers, are valid for all the drivers, except DXF, DGN e CGM.)
� New: text utility function cdTextBounds that returns the oriented bounding rectangle.

� New: "IMAGEFORMAT" and "IMAGEALPHA" attributes for the Windows base driver.

� New: In GDI+, the CD_CLIPBOARD driver supports EMF and BMP formats.

� New: function cdReleaseState to release the memory allocated by a state. The cdRestoreState does not release the memory

anymore so it can be used several times for the same state.
� Fixed: Invalid cdKillImage in X-Windows when active canvas is not the canvas where the image was created.
� Fixed: Text clipping for CD_IMAGERGB driver.

� Fixed: fixed size in milimeter of cdGetScreenSize in Win32.

� Fixed: fixed size of the EMF picture.
� Fixed: fixed the parse of filenames with spaces for all file based drivers. The filename must be inside double quotes (") if it has spaces.
� Fixed: cdSetAttribute in Lua now can set nil values.

� Fixed: fixed cdSector when interior style is CD_HOLLOW, to include two lines connecting to the center point.

� Fixed: In GDI+, the NATIVEWINDOW driver ignored other data pointer configurations in cdCreateCanvas.

� Fixed: In GDI+, cdStipple was not updated when the foreground or background colors where changed.

� Fixed: In GDI+, cdSector and cdArc have incorrect angles.

� Fixed: "simple.c" and "simple.zip" were outdated. Now new makefiles were added.
� Fixed: in Windows base driver small incompatibility in cdNativeFont with the IUP FONT attribute.
� Changed: Optimization flags now are ON when building the library in all platforms.
� Changed: Upgraded Freetype to version 2.1.10. The CD library file size increased because of this. But we gain a better text rendering for

images.
� Changed: Better organization of the documentation.
� Changed: In Windows the NATIVEWINDOW driver now accepts a NULL pointer to draw in the entire screen.
� Changed: Optimized cdPutImageRGBARect in Windows base driver.

� Changed: Now by default CD will not print X-Windows messages. To enable you must set the CD_XERROR environment variable.
� Changed: The default fill rule for polygons in CD_PS is now the Even-Odd rule. Matching the other drivers.
� Changed: Line Styles in GDI+ was corrected again to match GDI line styles when line width is not 1.
� Changed: The native WC support in GDI+ was removed because of alignment and size problems, simulation will be used.

Page 7 of 65

� Changed: the EMF drivers now ignore the resolution parameter. For EMFs, the resolution is always the screen resolution.
� Changed: the value of following attributes were changed to strings "IMAGEMASK", "IMAGEPOINTS", "ROTATE",

"GRADIENTCOLOR", "IMAGETRANSP" and "IMAGEFORMAT".

� Changed: in GDI+ base driver, the cdBegin modes CD_IMAGEWARP and CD_GRADIENT were moved to attributes "IMAGEPOINTS"

and "LINEGRADIENT". Mode CD_PATHGRADIENT was renamed to CD_FILLGRADIENT, and "PATHGRADIENT" attribute was

renamed to "GRADIENTCOLOR". Their definition was also changed.

� Changed: cdImageEx was renamed to cdBitmap, and now supports only client images. This will cause a conflict with a macro

definition in "im_image.h" header of the IM toolkit. Include this header before "cd.h" and inbetween set "#undef

cdPutBitmap". The IM macro will be changed in the next IM version.

� Changed: cdText is not dependent on the cdBackOpacity anymore. Text now is always transparent. If you need a box under the text

use cdTextBox to calculate the dimensions for cdBox.

Version 4.3.3 (25/Aug/2004)

� New: "USERLINESTYLE" attribute for the base GDI and X11 drivers.
� New: "GC" attribute for the base X11 driver.
� Changed: in the Native Window driver for the Windows system, the creation using a HDC can have an addicional parameter for the canvas

size.
� Changed: in cdTextSize for the GDI+ base driver we now compensates the height in -10% to match the GDI height.
� Changed: The GDI+ printer driver now returns the HDC attribute.
� Fixed: fixed a bug in cdNativeFont for the GDI+ base driver.

� Fixed: again fixed a rounding error in cdPutImage* for big zooms.

Version 4.3.2 (14/Apr/2004)

� Fixed: in the Win32 and X-Win drivers the cdPutImageRGB and cdPutImageMap functions when zooming bigger then the canvas

where incorrectly positioning the image by some pixels because of round errors.

Version 4.3.1 (07/Nov/2003)

� Fixed: in the Win32 driver the clipping of cdPutImage* functions when zooming was wrong. In the DoubleBuffer driver the main

canvas cdOrigin can be used to move the image in the swap operation (cdFlush). In the GDI+ DoubleBuffer driver there was an error

in the cdFlush when some primitive used world coordinates directly in the main canvas.

Version 4.3 (06/Mar/2003)

� New: the function cdlua_getcanvas retreives the pointer of a canvas created in Lua.

� New: in Win32 the function cdUseContextPlus change the behavior of the Windows drivers NativeWindow, IUP, Image, Printer,

EMF and Double Buffer to make them use the GDI+ for drawing. GDI+ does not have support for XOR Write Mode, but it has other
resources like: transparency, anti-aliasing, gradient filling, bezier lines and filled cardinal splines. WC functions are directly implemented
in the base driver. Two new functions were created to support transparency in the CD color coding: cdEncodeAlpha and

cdDecodeAlpha.Check the documentation for more information.

� Changed: the Lua binding is now distributed in the same package. There is only one version number.
� Fixed: the PS header had same flaws, the character ":" was missing in some DCS attributes.
� Fixed: screen resolution was wrong in the Win32 driver, this afects the size of the canvas in milimeters.
� Fixed: in the Win32 driver the creation of a polygon for clipping does not activate the clipping.
� Fixed: in the Win32 driver the function cdNativeFont using "-d" parameter need some ajusts. Also the returned string does not

contains all the used parameters.
� Fixed: in the Win32 driver the function cdPutImageRectRGBA had a positioning error.

Version 4.2 (20/July/2001)

� Changed: in driver Win32, cdNativeFont accepts parameter "-d" on the font name to show the font-selection dialog.

� Changed: the whole code can now be compiled as C++.
� Changed: functions wdPattern and wdStipple were changed to make pattern deformation more uniform.

� Fixed: in the Clipboard driver on Win32, when parameter "-b" was used the image was not correctly copied.

� Fixed: in certain moments, color vectors were being allocated with size 4 and should be "sizeof(long)". This was done to improve

the compatibility with 64-bit systems.
� Fixed: cdPutImageRectRGB in driver ImageRGB had a memory-invasion error in some cases when the image was placed in a negative

coordinate.

Version 4.1.10 (04/May/2000)

� Changed: the driver Native Windows in Win32 now also accepts an already created HDC handle as a parameter.
� Changed: in the cdPutImageMap* functions, in case the color vector is null, a vector with 256 gray shades in assumed.

� Fixed: cdRegisterAttribute was not verifying whether the attribute had already been registered.

� Fixed: function cdArc in the simulation driver (includes ImageRGB) was returning without drawing anything in an incorrect test.

� Fixed: function cdTextBox was returning incorrect values when the text had an orientation different from the default one in some

alignment instances.
� Fixed: in function cdRGB2Map there was a memory invasion.

� Fixed: the vector text simulation was not freeing the memory used for fonts loaded from files.
� Fixed: in the Doubled Buffer driver in X-Windows there was an invalid memory liberation.
� Fixed: in the Lua binding, in several functions receiving or returning tables, the first index was being considered as 0, but in Lua they must

be 1. This correction includes cdVectorTextTransform, cdGetVectorTextBounds, wdGetVectorTextBounds,

cdGetClipPoly and wdGetClipPoly.

� Fixed: when the PS driver generated EPS, it did not correctly add the description of the bounding box (a line break was missing).

Page 8 of 65

� Fixed: the vector text drawing functions did not take into account the fact that the default font and the GKS fonts were in ASCII standard.
Now a conversion from ANSI to ASCII is made before these fonts are used for drawing.

� Fixed: in the X-Win driver, an error in the X-Vertex library caused the texts in 90/270 degrees to be drawn incorrectly.
� Fixed: in the X-Win driver, the cdPutImageMap functions were generating a memory invasion when the X was in 16 bits.

� Fixed: in the Win32 driver, very large non-filled polygons were not being drawn in Windows 9x. To correct that, they were divided into
smaller polygons.

Version 4.1 (24/Nov/99)

� New: new basic Windows driver attributes that allow controling the internal simulation of pattern/stipple, XOR text, and filled polygon
("SIMXORTEXT", "SIMPATTERN8X8", "PENFILLPOLY"). New: attribute for returning the HDC of the Windows canvas.

� New: the PS driver accepts landscape orientation as a parameter. New: "POLYHOLE" attribute allows controling the number of holes in a

closed polygon. New: "-1" parameter forces a level 1 Postscript. New: "-g" parameter adds comments to the PS file in order to better

explain what is done. New: "CMD" attribute saves a string to the file.

� New: new environment variable, CD_QUIET, does not display in stdout the library's version information.

� New: two new exclusive functions for the Native Window driver: cdGetScreenColorPlanes and cdGetScreenSize.

� New: new CD_DBUFFER driver implements a double buffer using a server image.
� New: new attributes in the ImageRGB driver: "REDIMAGE", "GREENIMAGE" and "BLUEIMAGE".

� New: new functions wdGetVectorTextBounds and cdGetVectorTextBounds to obtain the bounding box of the vector text.

� New: new wdGetFont function. It is equivalent to cdGetFont, but the returned size is in millimeters.

� Fixed: the management of WD functions was incomplete for functions cdPixel, cdVertex and cdPutImage*. This resulted in a

wrong or out of the canvas positioning. It only affects drivers PS and METAFILE.
� Fixed: function cdActivate in Lua was not returning the correct values.

� Fixed: when the image was partially out of the window, above or below, functions cdPutImageMap and RGB were drawing a wrong

portion of the image.
� Fixed: in the CGM driver, after opening the file of the cdPlay function, the check to see if the opening had been successful was not being

done.
� Fixed: when the active canvas was already NULL, the activation of a NULL canvas was generating a memory invasion.

� Fixed: in the creation of EPS, the PS driver was adding a wrong call to setpagedevice. The cdPutImageMap function was

modifying the wrong PS parameter in the file. The margin clipping was not saved when the drawing's clipping area was changed. The
clipping area, when drawing in WD, was being incorrectly modified.

� Fixed: in the IMAGERGB driver, functions cdRedImage, cdBlueImage and cdGreenImage were returning invalid pointers.

� Fixed: when initializing text simulation functions, the opened font file was not being closed. This affected all CD drivers, but was only
apparent in the application that opened and closed many drivers.

� Fixed: the approximate computation of the text size was not accepting sizes in pixels.
� Fixed: the creation of the IMAGERGB driver in Lua was incorrect when the resolution parameter (which is optional) was not specified.
� Fixed: functions cdGetClipPoly and wdGetClipPoly in Lua were causing memory invasion.

� Changed: in the PS driver, when the Map image is actually a grayscale, function cdPutImageMap uses an 8 bit image, thus saving

memory. Level 2 Postscript functions rectfill, rectstroke and rectclip are now used. The comments in DCS were updated

to DCS version 3 and were increased to improve the document's portability.
� Changed: in driver X-Windows, the text drawing attribute was implemented with any orientation.
� Changed: function cdVersion in Lua now behaves just like in C. A global Lua variable, CDLUA_VERSION, was created containing the

version of the Lua binding library - for example: "CDLua 1.3.0".
� Changed: function cdVectorTextTransform now returns the previsous transformation matrix.

Version 4.0.1 (05/Mar/99)

� Fixed: in the Windows driver, the polygon simulation with pattern was corrected to polygons with repeated points.
� Fixed: in the Windows driver, function cdNativeFont was corrected for IUP fonts. It was affecting the Matrix's visualization.

� Fixed: function cdNativeFont was wrongly testing its input parameter and always returning.

� Fixed: in the drivers IUP and Native Window, the cdGetCanvasSize function was corrected. When the window size was changed, the

values in millimeters were not updated to cdActivate.

� Fixed: in the CGM driver, function cdPlay was generating problems in reading and displaying cell arrays. When the

cdCreateCanvas function used the default values for dimensions and resolution, it generated files with errors.

� Changed: in the X-Windows driver, function cdPixel was optimized. It now compares the color to the foreground color and reuses the

value.

Version 4.0 (18/Feb/99)

� Summary: (necessary due to the great number of changes).
- Update of the Lua binding.
- Several changes in the internal structure (most bringing benefits only to the driver developer).
- Countless corrections.
- Small changes in the functions cdHatch, cdScrollImage, cdFont and cdPlay.

- Optimization of functions wdVectorFont and cdMark.

- New: functions:
 cdCreateCanvasf, cdGetContext, cdContextCaps, cdSaveState, cdRestoreState,
cdSetAttribute, cdGetAttribute

 cdOrigin, cdRect, wdRect, cdGetFont, cdGetStipple, cdGetPattern, cdTextBox

 cdPutImageRectRGB, cdPutImageRectRGBA, cdPutImageRectMap,

 cdCreateImageEx, cdKillImageEx, cdPutImageEx, cdGetImageEx.

- New: WD functions: wdHardcopy, wdPattern, wdStipple, wdPixel, wdPutImageRect, wdPutImageRectRGB,

wdPutImageRectRGBA and wdPutImageRectMap.

- New: vector text functions: cdVectorFont, cdVectorTextDirection, cdVectorTextTransform,

cdVectorTextSize, cdGetVectorTextSize, cdVectorCharSize, cdVectorText and

cdMultiLineVectorText.

Page 9 of 65

- wdActivate is no longer necessary.

- Driver IMAGERGB complete.
- Driver SIMULATE no longer exists; now function cdSimulate must be used.

- New: driver DIRECTDRAW.
- Policy change of cdPalette in the X-Windows driver

- IUP driver is now in a separate library.

IMPORTANT NOTE: This version is not totally compatible to the previous one. The applications using the driver IUP must be relinked, as this
driver is now in a separate library, "cdiup". The Lua applications must also be modified to include a call to function cdluaiup_open after

cdlua_open, and must be linked with the "cdluaiup" library. The SIMULATE driver no longer exists, therefore the applications that used it

must be modified to use the new function, cdSimulate, without the need for creating a new driver.

� Changed: the internal structure of the library was changed once again. One of the purposes is to make the drivers become independent
from the function table. With this change, adding a new function to the function table does not imply editing the old drivers. We also
allowed the drivers not to implement functions that do not make sense in their context. Another modification simplifying the work in the
drivers was to bring the attribute query mechanism to the library's control part, freeing the drivers from this obligation. Taking the chance,
we determined that a change in an attribute to a value equal to the current one will not be effective, thus saving calls to the driver. Now, the
value of an attribute is changed even if the driver function is not implemented, as the driver can query this attribute later on. The
management of default values of the attributes is also done by the library's control part. All these changes prepare the library to a new
philosophy: before, if a driver did not contain a certain feature, it simply did nothing. The new philosophy will be: if a driver does not
contain a certain feature, then the simulation of this feature will be activated.

� Changed: when a canvas which is already active is activated again, an internal driver function is now called, notifying an update instead of
an activation.

� Changed: the use of the CD canvas with a IUP canvas is better described in the manual, showing the various ways of treating the canvas
creation prooblem.

� Changed: all functions in the control module now have ASSERT directives. Thus, using the library with depuration information, one can

better detect simple errors.
� Changed: in order to use the IUP driver, it must be linked with the "cdiup" library, apart from the "cd" library (cdiup.lib in Windows,

cdiuplib.a in UNIX).

� Changed: the IMAGERGB driver is now implemented using the simulation functions.
� Changed: the cdMark function is back to the function table, so that the drivers in which the primitive can be implemented can profit from

it.
� Changed: in order to assure that the use of server images is done only between canvases of the same driver, or of the same basic driver, an

internal structure was defined for the server image containing the functions of the driver from which the image was created. Thus, if the
cdKillImage function is called with an active canvas of a different kind from that in which the image was created, the KillImage

function of the correct driver will be called.
� Changed: in the X-Windows driver, the XV code was used to optimize functions cdPutImageRectRGB and cdPutImageRectMap.

� Changed: the Lua binding was updated. Now the user guide contains Lua function together with C functions.
� Changed: in the X-Windows driver, cdPalette's policy was changed to fulfill the requirements of some applications, which wanted to

force a palette. Please see the function's documentation in the driver.
� Changed: the CGM driver used to always store the cdForeground attribute before drawing a primitive; now it stores the attribute only

when it is changed. The cdBackOpacity function was not implemented. The cdFlush function was not preserving the canvas

attributes. Now when the canvas size is not specified in the cdCreateCanvas function, the VDC Extension saved to the file is the

figure's bounding rectangle. The patterns and/or stipples selected were being stored in a way so that only the first one was valid.
� Changed: the documentation of the old DOS driver was removed from the user guide.
� Changed: the default resolution for drivers DGN, DXF, METAFILE, CGM and ImageRGB is no longer 1 but 3.8 points per mm (96 DPI).
� Changed: in the cdInteriorStyle function, if stipple or pattern are not defined, the state of the attribute is not modified. There is no

longer a default 32x32 pattern or stipple.
� Changed: in functions cdFontDim and cdTextSize, if the driver does not support this kind of query, the values are estimated.

� Changed: function cdHatch now returns the previous value.

� Changed: function cdScrollImage is now called cdScrollArea, better reflecting its functionality, since it does not require any

explicitly defined image to be performed. The old function is maintained to assure compatibility with old applications.
� Changed: the cdPlay function now accepts all window parameters null. In this case, the primitives in the file are interpreted without

scaling.
� Changed: cdFontnow accepts font sizes in pixels when negative values are used as a parameter.

� Changed: the WD functions were included in the library's function table, so that the drivers can use floating point precision when storing
primitives. Presently, only the drivers PS and METAFILE have this resource directly implemented. With this change, the wdActivate

function became obsolete and is no longer necessary. For purposes of compatibility with other applications, it was maintained only as a
call to function cdActivate.

� Changed: drivers EMF and WMF now accept the resolution as a parameter.
� New: internal modification of the Windows driver to allow the creation of the DirectDraw driver.
� New: DirectDraw driver to accelerate video access to high-performance applications.
� New: function cdInteriorStyle now accepts style CD_HOLLOW. When this style is defined, the cdBox and cdSector functions

behave like their equivalents cdRect and cdArc, and the polygons with the CD_FILL style behave like CD_CLOSED_LINES.

� New: new functions:
- cdCreateCanvasf accepts parameters equivalent to sprintf, helping in the creation of some canvases.

- cdOrigin allows translating the origin - for instance, to the center of the canvas.

- cdGetContext returns the context of a given canvas; it can be compared with predefined contexts, such as "CD_PS".

- cdSaveState and cdRestoreState allow saving and restoring the state of attributes of the active canvas.

- cdSetAttribute and cdGetAttribute allow passing customized attributes to the driver, which are ignored if the driver does not

have the attribute defined.
- cdContextCaps returns a combination of several flags informing the available resources of the canvas in that context.

- Driver SIMULATE no longer exists. Now function cdSimulate must be used. The simulation can be activated and deactivated at any

moment.
- cdRect and wdRect allow drawing a box with no filling.

- cdGetFont returns the values of the font modified by function cdFont and ignores those modified by cdNativeFont.

Page 10 of 65

- cdTextBox returns the horizontal bounding rectangle of the text box, even if it is bended.

- cdGetStipple and cdGetPattern return current stipple and pattern. With these functions and with function cdGetFont, one can

now totally change and restore the attributes of a given canvas.
- wdPattern and wdStipple allow specifying the style in world coordinates. The size of the image is modified to the specified size in

millimeters.
- functions cdPutImageRectRGB, cdPutImageRectRGBA and cdPutImageRectMap allow specifying a rectangle in the

image to be used for the drawing instead of the whole image.
- wdPixel, wdPutImageRect, wdPutImageRectRGB, wdPutImageRectRGBA and wdPutImageRectMap are

equivalent to cdPixel, cdPutImageRect, cdPutImageRectRGB, cdPutImageRectRGBA and cdPutImageRectMap,

respectively, but the target coordinates are specified in world coordinates.
- New: vector text functions: cdVectorFont, cdVectorTextDirection, cdVectorTextTransform,

cdVectorTextSize, cdGetVectorTextSize, cdVectorCharSize, cdVectorText, cdMultiLineVectorText.

The vector text can now be used without the need of world coordinates. Functions wdVectorFont and wdVectorTextTransform

have become obsolete, though they still exist for compatibility reasons.
- wdHarcopy helps drawing WD primitives in devices, adjusting Window and Viewport.

- Auxiliary functions were created to manipulate all sorts of images in a single way, being either client, RGB, RGBA, MAP, or server
images: cdCreateImageEx, cdKillImageEx, cdPutImageEx, cdGetImageEx, etc.

� Fixed: the documentation of function cdFont was confusing, causing errors in the conversion from pixels to points.

� Fixed: function wdFont was making a wrong conversion of the font size parameter from millimeters to points.

� Fixed: functions wdVectorText and wdMultiLineVectorText were generating an extra polygon when the text contained blank

spaces in certain positions.
� Fixed: the PS driver was not prepared for marked texts. Function cdFlush did not preserve current attributes. The interior style was

affecting line drawing. The text alignment now takes into account an estimation for the baseline. Function cdTextOrientation was

implemented. The world coordinate functions were implemented directly in the driver. Hatch and stipple interior styles were implemented,
but they are still only opaque.

� Fixed: in the X-Windows driver, function cdGetColorPlanes was returning 8 bpp even if the canvas was 24 bbp when the default

visualization was different from the canvas' visualization in that X server. Text position on the screen was above the one entered. Function
cdFont was looping in certain conditions. Function cdEnd in the X-Windows driver in the AIX system was generating an error and

aborting the program if only one point of the polygon was specified. Dashed lines were always opaque, ignoring the cdBackOpacity

attribute.
� Fixed: in the Clipboard driver for X-Windows, a parameter was missing which prevented it from working properly. Before the update, it

used that of the IUP/Native Window active canvas.
� Fixed: in the Windows driver, the text position on the screen was above the position provided. Filled polygons had a one pixel error to the

right and below due to the small NULL used. Fillings with hatch, pattern and stipple still contain errors. The internal simulation of

polygons filled with pattern and stipple was also corrected; they had one additional pixel to the right and below. Text alignment treatment
was improved.

� Fixed: driver WMF now has text alignment.
� Fixed: in the PRINTER (Windows) driver, function cdFlush was not preserving current attributes.

� Fixed: in the CGM driver, the text align interpretation was corrected. The cdMark function is implemented directly in the driver. Function

cdBackOpacity was implemented. Mark interpretation was also corrected.

� OPTIMIZATION: function wdVectorFont only loads the new font if it is different from the current one.

� OPTIMIZATION: function cdMark now modifies fill and line attributes only if they are different from the one needed to draw the mark.

Version 3.6 (05/May/98)

� Fixed: / Win32: every time the clipping region changed the old region was not deleted.
� New: new function cdRGB2Map, which converts an RGB image into a 256 indexed-colors image. It is the same algorithm used in the IM

library - in fact, it is the same code.
� Changed: the cdMark function now uses the cdPixel function when drawing a mark of 1 pixel size.

� Changed: / Win32: the cdPixel function now uses the SetPixelV function when not under Win32s. This function is faster than the

SetPixel function because it does not return the old value.

� Changed: / Win32: the polygon used for clipping is now optimized to not include 3 points that are in the same horizontal or vertical line.
� Fixed: / WD: the wdVectorText function was not drawing correctly when extended characters (>128) were used.

� Fixed: / X: the cdPalette function and the color management for canvases with only 256 colors were wrong. Each canvas had its own

management, now all canvases in the same aplication use the same management.
� Fixed: / X: several resource and memory leaks were corrected.
� Fixed: / IMAGERGB: functions cdRedImage, cdGreenImage and cdBlueImage were not returning the correct pointer.

� Fixed: / SunOS: drivers IMAGERGB, SIMULATE and NATIVEWINDOW use the "%p" format string, but in the SunOS they use "%d"
because of an internal bug of the run time library of this OS.

� Changed: / IUP: driver IUP sets the cdCanvas function as an attribute of the IupCanvas passed as a parameter using the name

"_CD_CANVAS".
� MANUAL: the manual appearance was changed to match the new Tecgraf standard.

Version 3.5 (07/Jan/98)

� New: the cdTextDirection function allows raster text to be drawn in any direction. Up to now it is implemented only in the basic

Win32 driver.
� Fixed: / X / NativeWindow: the canvas was not created if the screen was 0.
� Fixed: / Win32 / NativeWindow: now the driver considers the existence of non owner-draw device contexts.
� Fixed: / Win32: function cdClipArea was not including xmax and xmin in the clipping area.

� Changed: the cdCallback typedef was defined, being useful for type casting when calling the cdRegisterCallback function.

� Fixed: / Win32: a compatibility problem with the cdNativeFont string and the WINFONT IUP attribute was corrected.

� Changed: / Win32: the cdPutImageRGB and cdPutImageMap functions use a cache memory for best performance.

� Fixed: text size estimation for the CGM and PS drivers now uses Courier New: as the "System" font. As it was, it was causing a memory
invasion.

Page 11 of 65

Version 3.4 (12/Nov/97)

� Changed: / X: memory use of the cdPutImageRGB, cdPutImageRGBA and cdPutImageMap functions was optimized, as well as

the performance of the cdPutImageMap function.

� Changed: / X and Win32: when the canvas has bpp <= 8, function cdPutImageRGB converts the image into Map before displaying it.

� Changed: / X and Win32: if a font's parameters are the same as the current parameters, the cdFont function does nothing.

� DOC / PS: the "-d" parameter for the EPS option was not documented.
� Fixed: / PS: parameters "-w" and "-h" were incorrectly interpreted.
� Fixed: / X: the internal function names were generating an error in the VMS plataform.
� Fixed: / X: the cdKillCanvas function was freeing some pointers of the active canvas.

� Changed: / Win32: the cdVertex function now ignores duplicate points.

� Changed: / Win32: the cdNativeFont function also accepts the font string of the WINFONT IUP attribute.

� Fixed: / DXF: corrections in color conversion and in the cdArc function for small radius were made, and an unnecessary identation was

removed.

Version 3.3 (19/Sep/97)

� Changed: / X: the cdFont function now has a better heuristic to find a closer font if the requested font does not match an available one.

� Changed: / X: the cdPattern and cdStipple functions now use a bitmap cache to store the pixmap and do not recreate it if the size is

not changed.
� Fixed: / X and Win32: the cdPutImageRect function was placing the bitmap in a wrong position.

� Fixed: / Win32: the cdCreateImage function did not return NULL when the creating failed.

� Changed: / Win32: the cdPutImageRGB, cdPutImageRGBA and cdPutImageMap functions were largely optimized when the

picture displayed is larger than the screen.
� Changed: / WMF: using the cdPlay function we discovered that the size of the picture was incorrect in the header file, so we first had to

calculate the bounding box and then interpret the picture.
� Changed: / PS and CGM: now the cdFontDim and cdTextSize functions return approximate dimensions, instead of nothing.

� Fixed: / PS: the default font was not being set when the canvas was created.
� Fixed: / PS: text alignment was incorrect in the vertical direction.
� Fixed: / SIM: the clipping algorithm of the cdPixel function of the Simulation driver was corrected.

� Fixed: / CD: now you can activate a NULL canvas. When you get the active canvas and restore it, if it was NULL the cdActivate

function was accessing an invalid pointer.
� MANUAL: several changes were made on the online manual structure, and were added to the CDLua page.

Version 3.2

� A problem in the cdFlush function in the Postscript driver was corrected. It was not setting the scale.

� Functions wdFontDim and wdTextSize now check if the return pointers are not NULL.

� An internal function in the DGN driver was drawing an ellipse with two times the axis size.
� The cdFont function was corrected to store the font names in the CGM driver.

Version 3.1

� Several minor bugs in the Win32 Printer driver and in the Postscript driver were corrected. The EPS mode of the PS driver now generates a
"showpage" PS function so it can be printed.

� The Clipboard driver was implemented in Motif. The cdPlay function was implemented in the Motif and Win32 Clipboard drivers.

� The cdRegisterCallback function was added to allow the customization of the cdPlay function's behavior.

� The wdVectorTextTransform function allows a 2D transformation applied to any vector text.

� Now the Simulation driver has several levels of simulation, and the simulation was improved with pattern and clipping simulation.

Version 3.0

� The library's architecture underwent several changes. The function tables are no longer public, only the drivers know its structure. This
means that we have eliminated the need to recompile applications that use the dynamic library when we change something in the function
table. There are some other benefits, like the fact that the Windows DLL can now be implemented and that it is more simple to explain the
library to new users, so they will not be confused by the cdprivat.h header.

� Corrections to the text alignment of the wdVectortext function were made.

� Memory allocation of the cdPattern and cdStipple functions in the basic Windows driver was corrected.

� Memory release of the cdKillCanvas function in the basic Windows driver was corrected.

� The cdPattern function was implemented in the Postscript driver, and the cdPutImageRGB and cdPutImageMap functions now

write color images.
� The cdPattern function was corrected in the basic X-Windows driver for use with clipping.

� The compiler directive #include<malloc.h> was changed to #include<stdlib.h> in several modules for better compatibility

with other compilers.
� The cdPlay function now accepts the viewport rectangle where the drawing will be rendered.

� Several navigation changes were made to the user guide pages.
� A new CD_SIMULATE driver was created. Use it to replace some primitives and to handle attributes of another driver. It can be used with

any other driver. Basically, it substitutes the interior style of dependent primitives: box, sector and filled polygons. It also substitutes the
clipping methods of these primitives.

� The Windows DLL version of the library was created.

Version 2.2.1

� Interrnal macros that affect wdArc and wdSector were corrected.

� The CGM driver now supports some client image functions.
� Hatch styles in the Image RGB driver were corrected.

Page 12 of 65

Version 2.2.0

New: Functions:

cdVersion - returns the current library version.

cdNativeFont - sets a native font.

cdPutImageRect - same as cdPutImage but you may specify a part of the image.

cdPutImageRGBA - cdPutImageRGB with transparency.

wdFont - cdFont for the WD client, the size parameter is in millimeters.

New: Drivers:

NativeWindow - now the library can work with other Interface libraries.
DGN - MicroStation Design File.
EMF - Windows Enhanced Metafile.
CD Metafile - our own metafile.
Client Image RGB - now you can write in an RGB image.

� DGN, CGM and DXF file-based drivers now have a default size in pixels (INT_MAX = 2.147.483.647) and are optional. In fact the size
is irrelevant in these file formats. The cdCreateCanvas data string may contain the size in millimeters and the resolution in pixels per

millimeters. Both are real values. The default resolution is 1.
� The cdPlay function now works on the CGM and on the CD Metafile drivers.

� The interior style attributes were implemented in the CGM driver.
� On the Clipboard driver: limitations are considered if creating a WMF under Win32s.
� Now the Printer Driver shows the Printer's Dialog Box (Win32 & Mac) if the parameter "-d" is specified.
� On the PS driver: all the dimensions in the Data parameter string are now in millimeters.
� On the WMF driver: several functions were disabled because of WMF limitations. Picture size was corrected.
� On the basic X-Windows driver: cdLineWidth(1) uses width 0 for better performance. Stipple was being incorrectly interpreted.

cdGetImageRGB was swapping red and blue channels on true color canvas.

� The clipping region now can be a polygon on some systems/drivers (Win32, Mac, X-Win and PS). Use cdClip(CD_CLIPPOLYGON) to

use the polygon defined by a cdBegin(CD_CLIP), cdVertex(...), cdEnd() sequence.

� The functions wdMM2Pixel and wdPixel2MM became cdMM2Pixel and cdPixel2MM, respectively.

� Minor bugs in the wdFontDim, wdLineWidth and wdMarkSize functions were corrected.

� wdVectorCharSize now returns the previous value.

Up to Version 2.1

� The cdActiveCanvas, cdPlay and the wdVectorFont functions were added, and the cdKillCanvas function was corrected

when destroying the current canvas.
� The cdMark function no longer depends on line style, line width and interior style attributes, and it is the same for all drivers because it is

implemented only with CD functions.
� The wdLineWidth and wdMarkSize functions now use millimeters.

� The functions cdEncodeColor and cdDecodeColor now can be called without an active canvas. The DXF driver was added.

� WD can now access files with vector font definitions.
� Minor bugs in the wdTextSize function were corrected.

To Do

CD

� A new GDK base driver.
� A new SVG driver.
� libEMF in UNIX.

MAC

� Build a native Mac OS X driver using Quartz 2D.
� Macintosh Picture (PICT) file.

X-WIN

� Xp: X Printer Extension driver
� XShm: Double Buffering and MIT-Shared Memory extensions for server images ?
� XIE: X Imaging Extensions ?
� Shape Extension and XShapeCombineMask to implement "WINDOWRGN" attribute (non rectangular windows from regions)

Simulation

� Implement line styles, line cap and line join for line with > 1.
� Improve Sector rasterization.

PS

� Allow functions cdPutImageMap... to be implemented using indexed color space.

� Check the possibility of cdHatch and cdStipple, which are always opaque, having transparency, using shading from PS Version 3 or

mask images. Same for cdPutImageRGBA.

Page 13 of 65

Not likely to be updated anymore, although they are still supported.

DXF

� Implement Arch and Sector functions as DXF primitives, and not as polygons. Update all other primitives according to the new DXF
manual, as there are several limitations in the current implementation.

CGM

� Make cdPlay treat the possibility of xmax and ymax being 0.

� Check the possibility of implementing function cdTextOrientation.
� Implement World Coordinate functions directly in the driver.
� Correct the cdPlay function, which is generating several extra lines.

� Correct the cdPlay function, which should not preserve the aspect ratio.

� Allow cdPutImageRGBA to be partially implemented using transparent cell color.

DGN

� Improve the driver using the DGNlib third party library.
� Implement the interior style attributes: hatch, stipple and pattern. They depend on the new DGN specification, which we do not have yet.
� Check the possibility of implementing functions cdTextOrientation and cdRect.

� Correct function cdKillCanvas, which generates "assertion failed" when the library is used with debug information and the Seed file is

not included.

Comparing CD with Other Graphics Libraries

There are other graphics libraries, with some portability among operational systems, available on the Internet. Among them we can highlight:

� GKS - Very complete 2D and 3D graphics library, but with limited image resources. It is an ISO standard, and it implementations are
usually commercial. Tecgraf has an implementation of GKS which is no longer used, being replaced by CD. http://www.bsi.org.uk/sc24/.

� Mesa - 3D graphics library with support to the OpenGL standard. Implemented in C. Aimed only at display, with attribute functions for
illumination and shading features. http://www.mesa3d.org/.

� OpenGL - 3D graphics library with some 2D support. Aimed only at display. A window CD canvas can coexist with an OpenGL canvas at
the same time. Note: When Double Buffer is used, do not forget to swap buffer before redrawing with the CD library.
http://www.opengl.org.

� GGI - 2D graphics library aimed only at display. http://www.ggi-project.org/.
� GD - Library only for drawing on images, saves PNG files. Implemented in C. http://www.boutell.com/gd/.
� GDK - Used by the GTK user interface toolkit. Implemented in C. Aimed only at display, and contains several functions for managing

windows, keyboard and mouse. http://www.gtk.org/.
� CAIRO - A vector graphics library designed to provide high-quality display and print output. Very interesting, lots of functions, usually

render in bitmaps on native systems. Display hardware acceleration is used almost only to display the bitmaps. Although it can reach high
quality rendering. http://cairographics.org/.

� AGG - The AGG Project (Anti-Grain Geometry). High Fidelity 2D Graphics A High Quality Rendering Engine for C++. Renders to a
bitmap then transfer it to the native system, just like Cairo. GNU GPL license. http://www.antigrain.com/

Most of them are aimed only at one type of driver, usually display or images, and sometimes user interface routines were also included. Others
add 3D drawing routines, as well as scene illumination routines. All this unnecessarily increases their complexity and does not make them more
complete as 2D graphic libraries.

There are also several Graphics User Interface libraries that contain drawing functions, like Qt and wxWidgets.

As to performance, CD is as good as any other, in some cases having a better performance. Thus, the CD library offers unique features and
quality as a portable 2D graphic library.

Guide

Getting Started

The CD library is a basic graphic library (GL). In a GL paradigm you use primitives, which have attributes, to draw on a canvas. All the
library functions reflect this paradigm.

The canvas is the basic element. It can have several forms: a paper, a video monitor, a graphic file format, etc. The virtual drawing surface
where the canvas exists is represented by a driver. Only the driver knows how to draw on its surface. The user does not use the driver directly,
but only the canvas.

To make the library simple we use the concept of an active canvas, over which all the primitives are drawn. This also allows the use of an
expansion mechanism using function tables. Unfortunately if a function is called without an active canvas a memory invasion will occur. On the
other hand, the mechanism allows the library to be expanded with new drivers without limits.

The attributes are also separated from the primitives. They reside in the canvas in a state mechanism. If you change the attribute's state in the
canvas all the primitives drawn after that canvas and that depend on the attribute will be drawn in a different way.

The set of primitives is very small but complete enough to compose a GL. Some primitives are system dependent for performance reasons.

Page 14 of 65

Some drivers (window and device based) use system functions to optimally implement the primitives. Sometimes this implies in a in small
different behavior of some functions. Also some primitives do not make sense in some drivers, like server images in file-based drivers.

The set of available functions is such that it can be implemented in most drivers. Some drivers have sophisticated resources, which cannot be
implemented in other drivers but can be made available using a generic attribute mecanism.

Building Applications

All the CD functions are declared in the cd.h header file; World Coordinate functions are declared in the wd.h header file; and each driver has a

correspondent header file that must be included to create a canvas. It is important to include each driver header after the inclusion of the cd.h

header file.

To link the application you must add the cd.lib/libcd.a/libcd.so and freetype6.lib/libfreetype.a/libfreetype.so libraries to the linker options. If
you use an IUP Canvas then you must also link with the iupcd.lib/libiupcd.a/libiupcd.so library available in the IUP distribution.

In UNIX, CD uses the Xlib (X11) libraries. To link an application in UNIX, add also the "-lX11" option in the linker call.

The download files list includes the Tecgraf/PUC-Rio Library Download Tips document, with a description of all the available binaries.

Building the Library

In the Downloads you will ne able to find pre-compiled binaries for many platforms, all those binaries were built using Tecmake. Tecmake is a
command line multi compiler build tool based on GNU make, available at http://www.tecgraf.puc-rio.br/tecmake. Tecmake is used by all the
Tecgraf libraries and many applications.

In UNIX, you do not need to install Tecmake, a compact version of Tecmake for UNIX is already included in the source code package. Just type
"make" in the command line on the "src" folder and all libraries and executables will be build. Set the TECTOOLS_HOME environment
variable to the folder were the IM and Lua libraries are installed, by default it will assume "TECTOOLS_HOME=../..".

In Windows, the easiest way to build everything is to install the Tecmake tool into your system. It is easy and helps a lot. The Tecmake
configuration files (*.mak) available at the "src" folder are very easy to understand also. Also there are files named make_uname.bat that build
the libraries using Tecmake. To build for Windows using Visual C 7.0 (2005) for example, just execute "make_uname vc7" , or the DLLs with
Visual C++ 9 (2008) type "make_uname dll9". The Visual Studio workspaces with the respective projects available in the source package is for
debugging purposes only.

Make sure you have all the dependencies for the library you want installed, see the documentation bellow.

If you are going to build all the libraries, the makefiles and projects expect the following directory tree:

\mylibs\

 cd\

 im\

 lua5.1\

Libraries Dependencies

cd -> gdi32 user32 comdlg32 (system - Windows)

 -> X11 (system - UNIX)

 -> FreeType (included as separate library)

cdgdiplus -> cd

 -> gdiplus (system - Windows)

cdxrender -> cd

 -> Xrender Xft (system - UNIX)

cdpdf -> pdflib (included as separate library)

cdlua51 -> cd

 -> lua5.1
cdluaim51 -> cdlua51

 -> imlua51

cdluapdf51 -> cdlua51

 -> cdpdf

As a general rule (excluding system dependencies and included third party libraries): CD has NO external dependencies, and CDLua depends on
Lua and IMLua. Just notice that not all CDLua libraries depend on IMLua.

The Lua bindings for IUP, CD and IM (Makfiles and Pre-compiled binaries) depend on the LuaBinaries distribution. So if you are going to
build all use the LuaBinaries source package also, not the Lua.org original source package. If you like to use another location for the Lua files
overwrite the LUAINC, LUALIB and LUABINDIR definitions before using Tecmake or Tecmake Compact.

In Ubuntu you will need to install the following packages:

libx11-dev

libxpm-dev

libxmu-dev

libxft-dev

Environment Variables

CDDIR - This environment variable is used by some drivers to locate useful data files, such as font definition files. It contains the directory path

without the final slash.
CD_QUIET - In UNIX, if this variable is defined, it does not show the library's version info on sdtout.

CD_XERROR - In UNIX, if this variable is defined, it will show the X-Windows error messages on sdterr.

Page 15 of 65

Implementing a Driver

The best way to implement a new driver is based on an existing one. For this reason, we provide a code of the simplest driver possible, see
CDXX.H and CDXX.C. But first you should read the Internal Architecture.

Intercepting Primitives

To fill data structures of library primitives during a cdPlay call you must implement a driver and activate it before calling cdPlay. Inside

your driver primitives you can fill your data structure with the information interpreted by the cdPlay function.

IUP Compatibility

The IupCanvas element of the IUP interface toolkit can be used as a visualization surface for a CD canvas. There are two moments in which
one must be careful when an application is using both libraries: when creating the CD canvas, and when changing the size of the IUP canvas.

Creating the CD Canvas

The CD_IUP driver parameter needs only the Ihandle* of the IupCanvas. But cdCreateCanvas must be called after the IupCanvas element
has been mapped into the native system.

But a call to IupShow generates an ACTION callback. And a direct call to IupMap can generate a RESIZE_CB callback.

So the best way to create a CD canvas for a IUP canvas is to use the IupCanvas MAP_CB callback. This callback will be always called before
any other callback.

The application must be linked with the iupcd library that it is available in the IUP package.

Resizing the IUP Canvas

When a IupCanvas is resized the CD canvas must be notified of the size change. To do that simply call cdCanvasActivate in the RESIZE_CB
callback.

Internal Architecture

Modularity

Apart from the several drivers, the CD library is composed of a few modules, the public header files cd.h and wd.h, those which implement the
functions independently from drivers, cd*.c and wd.c, and the header file cd_private.h, apart from some other modules which implement non-
exported specific functions. Such modules are totally independent from the implemented drivers, as well as every driver independs from one
another, unless there is an intentional dependency.

Linking

Since the drivers independ from one another, we could create a library for each of them. For the drivers provided with CD it was easy to include
them in their own library, thus simplifying the application's linking process. Note: Internally, the drivers are called "context".

In order to establish this dependency, when creating a canvas in a given driver the user must specify the driver to be used. This specification is
done by means of a macro which is actually a function with no parameter, which passes the function table from that driver to the canvas creation
function. For instance:

CD_PS (is in fact) cdContextPS()

cdCreateCanvas(CD_PS, "teste.ps"); (will do) canvas->Line = context->Line

If the context function is not invoqued then that driver does not need to be linked with the application. This is usefull if the application uses a
custom build of the CD library and usefull for additional drivers not included in the main library, like IUP and PDF, that have external
dependencies.

Structures

The core implementation defines the structures declared in the cd.h header. But declares an undefined structure called cdCtxCanvas. This
structure is defined in each driver according to their needs. But the first member of this structure must be a pointer to the cdCanvas structure.

The drivers need not to implement all functions from the function table, only a few are required.

Here is the definition of the cdContext and cdCanvas structures:

struct _cdContext

{

 unsigned long caps;

 /* can NOT be NULL */

 void (*CreateCanvas)(cdCanvas* canvas, void *data);

 void (*InitTable)(cdCanvas* canvas);

 /* can be NULL */

 int (*Play)(cdCanvas* canvas, int xmin, int xmax, int ymin, int ymax, void *data);

 int (*RegisterCallback)(int cb, cdCallback func);

};

struct _cdCanvas

Page 16 of 65

Internally each driver defines its cdCtxCanvas strcuture:

struct _cdCtxCanvas

{

 cdCanvas* canvas;

 char* filename;

 int last_line_style;

 int last_fill_mode;

 FILE* file;

};

Then it must implement the cdcreatecanvas and cdinittable functions:

/* In the driver implementation file */

static void cdcreatecanvas(cdCanvas *canvas, void *data)

{

 cdCtxCanvas* ctxcanvas = (cdCtxCanvas *)malloc(sizeof(cdCtxCanvas));

 // parse data parameters

 ...

 ctxcanvas->canvas = canvas;

 canvas->ctxcanvas = ctxcanvas;

 /* update canvas context */

 canvas->w = (int)(w_mm * res);

 canvas->h = (int)(h_mm * res);

 canvas->w_mm = w_mm;

 canvas->h_mm = h_mm;

 canvas->bpp = 24;

 canvas->xres = res;

 canvas->yres = res;

}

static void cdinittable(cdCanvas* canvas)

{

 canvas->Flush = cdflush;

 canvas->Clear = cdclear;

 canvas->Pixel = cdpixel;

 canvas->Line = cdline;

 canvas->Poly = cdpoly;

 ...

 }

static cdContext cdMetafileContext =

{

 CD_CAP_ALL & ~(CD_CAP_GETIMAGERGB|CD_CAP_IMAGESRV|CD_CAP_REGION|CD_CAP_FONTDIM|CD_CAP_TEXTSIZE),

 cdcreatecanvas,

 cdinittable,

 cdplay,

 cdregistercallback,

};

cdContext* cdContextMetafile(void)

{

 return &cdMetafileContext;

}

To simplify driver administration, the context structure's linking is done as follows:

/* In the header file */

{

 ...

 void (*Line)(cdCtxCanvas* ctxcanvas, int x1, int y1, int x2, int y2);

 void (*Rect)(cdCtxCanvas* ctxcanvas, int xmin, int xmax, int ymin, int ymax);

 void (*Box)(cdCtxCanvas* ctxcanvas, int xmin, int xmax, int ymin, int ymax);

 ...

 ...

 int mark_type, mark_size;

 int line_style, line_width;

 int interior_style, hatch_style;

 ...

 cdVectorFont* vector_font;

 cdSimulation* simulation;

 cdCtxCanvas* ctxcanvas; // context dependent defintion

 cdContext* context;

};

#define CD_METAFILE cdContextMetafile()

cdContext* cdContextMetafile(void)

Attributes

Page 17 of 65

The query mechanism of an attribute is done in the core and does not depends on the driver. Due to this fact, the attributes which are modified
several times for the same value are not updated in the drivers, thus saving processing. Similarly, if an attribute modification in a driver was not
successful, its value is not updated. Nevertheless, the fact that a driver does not implement the attribute's modification function does not mean
that it rejects that attribute - the driver just does not need to do anything with this attribute on that moment and will query it later, before drawing
the primitive.

The creation of customized attributes for each driver is made generically, using string-like attributes. A structure with the attribute's name and
its set and get functions must be declared, as in the example below:

static void set_fill_attrib(cdCtxCanvas* ctxcanvas, char* data)

{

 ctxcanvas->fill_attrib[0] = data[0];

}

static char* get_fill_attrib(cdCtxCanvas* ctxcanvas)

{

 return ctxcanvas->fill_attrib;

}

static cdAttribute fill_attrib =

{

 "SIMPENFILLPOLY",

 set_fill_attrib,

 get_fill_attrib

};

At createcanvas in the driver:

ctxcanvas->fill_attrib[0] = '1';

ctxcanvas->fill_attrib[1] = 0;

cdRegisterAttribute(canvas, &fill_attrib);

, for instance, must exist, thus initializing the attribute and registering it in the canvas' attribute list.

Samples

Simple Draw

This is an example of a simple drawing program using a IUP canvas:

cdCanvas* canvas = cdCreateCanvas(CD_NATIVEWINDOW, IupGetAttribute(IupCanvas,"CONID"));

cdCanvasLineStyle(canvas, CD_DASHED);

cdCanvasLine(canvas, 0, 0, 100, 100);

cdCanvasKillCanvas(canvas);

If you want to use World Coordinates:

cdCanvas* canvas = cdCreateCanvas(CD_NATIVEWINDOW, IupGetAttribute(IupCanvas,"CONID"));

wdCanvasViewport(canvas, 0, 100, 0, 100);

wdCanvasWindow(canvas, -1.5, 1.5, -3000, 3000);

cdCanvasLineStyle(canvas, CD_DASHED);

wdCanvasLine(canvas, -0.5, -500, 1.0, 1000);

cdKillCanvas(canvas);

Off Screen Drawing (Double Buffering)

To draw in the background and later on transfer the drawing to the screen, use:

cdCanvas* canvas = cdCreateCanvas(CD_NATIVEWINDOW, IupGetAttribute(IupCanvas,"CONID"));

cdCanvas* db_canvas = cdCreateCanvas(CD_DBUFFER, canvas); cdCanvasActivate(db_canvas); // update canvas size, window could be resized

cdCanvasLineStyle(db_canvas, CD_DASHED);

cdCanvasLine(db_canvas, 10, 10, 50, 50);

cdCanvasFlush(db_canvas); // swap to the window canvas

cdKillCanvas(db_canvas);

cdKillCanvas(canvas);

To draw in a RGB image, use:

cdCanvas* canvas = cdCreateCanvasf(CD_IMAGERGB, "%dx%d", width, height);

cdCanvasLineStyle(canvas, CD_DASHED);

cdCanvasLine(canvas, 10, 10, 50, 50);

unsigned char* red = cdCanvasGetAttribute(canvas, "REDIMAGE");

// do something with the raw image data

cdKillCanvas(canvas);

Lua Samples

To draw in a RGB image in CDLua for Lua 5:

bitmap = cd.CreateBitmap(200,200,cd.RGB)

canvas = cd.CreateCanvas(cd.IMAGERGB, bitmap)

canvas:Font("Times", cd.BOLD, 12)

canvas:Text(10, 10, "Test")

canvas:KillCanvas()

Page 18 of 65

Check the file samples_cdlua5.zip or samples_cdlua5.tar.gz for several samples in Lua. For some of them you will need also the IUP
libraries. You can also browse the examples folder.

Screen Capture in Windows

Using a NULL parameter to the NATIVEWINDOW driver you can get access to the entire screen:

cdCanvas *canvas = cdCreateCanvas(CD_NATIVEWINDOW, NULL);

cdCanvasGetSize(canvas, &width, &height, NULL, NULL);

// allocate red, green and blue pointers

cdCanvasGetImageRGB(canvas, red, green, blue, 0, 0, width, height);

cdKillCanvas(canvas);

Generating an EMF file that contains an IM Image in Lua

image = im.FileImageLoadBitmap(image_filename)

canvas = cd.CreateCanvas(cd.EMF,emf_filename.." "..image:Width().."x"..image:Height())

image:cdCanvasPutImageRect(canvas,0,0,0,0)

cd.KillCanvas(canvas)

Complete Example

We have created an application called Simple Draw that illustrates the use of all functions in the CD library (including WD). You can see the
source code in the simple.c file, or take the file simple.zip for a complete set of files including makefiles for all platforms. Extract the files
creating subfolders, using parameter "-d".

Example for Tests

The CDTEST example is actually one of the applications used to test virtually all functions of the CD library. Its interface uses the IUP library,
and it can run in several platforms. You can take either the .EXE files or the source code. Extract the files creating subfolders, using parameter
"-d". Warning: This application is not didactic.

Lua Binding

Overview

CDLua was developed to make all functionalities of the CD library available to Lua programmers. To use the CDLua bindings, your executable
must be linked with the CDLua library, and you must call the initialization function cdlua_open declared in the header file cdlua.h, as

seen in the example below:

The cdlua_open() function registers all CD functions and constants your Lua program will need. The use of the CDLua functions in Lua is

generally identical to their equivalents in C. Nevertheless, there are several exceptions due to differences between the two languages. Notice
that, as opposed to C, in which the flags are combined with the bitwise operator OR, in Lua the flags are added arithmetically.

The CDLua dynamic libraries are also compatible with the Lua 5 "loadlib" function. Here is an example on how to dynamically load CD in Lua
5.1:

local cdlua_open = package.loadlib("cdlua51.dll", "cdlua_open")

cdlua_open()

Lua 5.1 "require" can be used for all the CDLua libraries. You can use require"cdlua" and so on, but the LUA_CPATH must also contains the
following:

"./lib?51.so;" [in UNIX]

".\\?51.dll;" [in Windows]

The LuaBinaries distribution already includes these modifications on the default search path.

in Lua5

#include <lua.h>

#include <lualib.h>

#include <lauxlib.h>

#include <cdlua.h>

void main(void)

{

 lua_State *L = lua_open();

 luaopen_string(L);

 luaopen_math(L);

 luaopen_io(L);

 cdlua_open(L);

 lua_dofile("myprog.lua");

 cdlua_close(L);

 lua_close(L);

}

Page 19 of 65

The simplest form require"cd" and so on, can not be used because there are CD dynamic libraries with names that will conflict with the names
used by require during search.

Function Names and Definitions

In Lua, because of the name space "cd" all the functions and definitions have their names prefix changed. The general rule is quite simple:

cdXxx -> cd.Xxx

wdXxx -> cd.wXxx

CD_XXX -> cd.XXX

Modifications to the API

New functions (without equivalents in C) were implemented to create and destroy objects that do not exist in C. For instance functions were
developed to create and destroy images, pattern, stipple and palette. All the metatables have the "tostring" method implemented to help
debuging.

Some functions were modified to receive those objects as parameters.

Also the functions which receive values by reference in C were modified. Generally, the values of parameters that would have their values
modified are now returned by the function in the same order.

Garbage Collection

All the objects are garbage collected by the Lua garbage collector, except the canvas because there can be different Lua canvases pointing to the
same C canvas. The tostring method of the Lua canvas will print both values, Lua and C. The equal method will compare the C canvas value.

Exchanging Values between C and Lua

Because of some applications that interchange the use of CD canvases in Lua and C, we build a few C functions that are available in "cdlua.h":

cdCanvas* cdlua_checkcanvas(lua_State* L, int pos);

void cdlua_pushcanvas(lua_State* L, cdCanvas* canvas);

CDLua+IMLua

When CD is used togheter with the IM library in Lua, the CD bitmap and the IM image objects in Lua have a few more methods. These
methods allow to map the imImage structure to the cdBitmap structure and add some facilities to draw on an imImage using a CD canvas.

See also the IM documentation.

Color values and palettes can be created and used transparently in both libraries. Palettes and color values are 100% compatible between CD
and IM.

You must link the application with the "cdluaim51" library.

See also the IM documentation.

int cdluaim_open(lua_State* L); [in C] [for Lua 5]

Must be called to enable the additional methods. Can be called only after CDLua and IMLua were initialized. require"cdluaim" can also be used.

Returns 0 (leaves nothing on the top of the stack).

Available methods

bitmap:imImageCreate() -> image: imImage [in Lua]

Creates an imImage from a cdBitmap.

image:cdCreateBitmap() -> bitmap: cdBitmap [in Lua]

Creates a cdBitmap from an imImage. The imImage must be a bitmap image, see "image:IsBitmap".

image:cdInitBitmap() -> bitmap: cdBitmap [in Lua]

Creates a cdBitmap from an imImage, but reuses image data. When the cdBitmap is destroyed, the data is preserved.

image:cdCanvasPutImageRect(canvas: cdCanvas, x: number, y: number, w: number, h: number, xmin: number, xmax: number, ymin: number, ymax: number) [in Lua]

 Draws the imImage into the given cdCanvas. The imImage must be a bitmap image, see \ref imImageIsBitmap.

image:wdCanvasPutImageRect(canvas: cdCanvas, x: number, y: number, w: number, h: number, xmin: number, xmax: number, ymin: number, ymax: number) [in Lua]

Draws the imImage into the given cdCanvas using world coordinates. The imImage must be a bitmap image, see \ref imImageIsBitmap.

image:cdCanvasGetImage(canvas: cdCanvas, x: number, y: number) [in Lua]

Retrieve the imImage data from the given cdCanvas. The imImage must be a IM_RGB/IM_BYTE image.

image:cdCreateCanvas([res: number]) -> canvas: cdCanvas [in Lua]

Page 20 of 65

 Creates a cdCanvas using the CD_IMAGERGB driver. Resolution is optional, default is 3.8 pixels per milimiter (96.52 DPI). The imImage
must be a IM_RGB/IM_BYTE image.

Canvas

The canvas represents the drawing surface. It could be anything: a file, a client area inside a window in a Window System, a paper used by a
printer, etc. Each canvas has its own attributes.

Initialization

You must call cdCreateCanvas to create a canvas, and cdKillCanvas when you do not need the canvas anymore. It is not necessary to activate
a canvas using cdCanvasActivate, but some drivers may require that call.

To know if a feature is supported by a driver, use function cdContextCaps or see the driver's documentation.

Control

Some canvases are buffered and need to be flushed; for that, use the cdCanvasFlush function. In some drivers, this function can also be used to
change to another page, as in drivers CD_PRINTER and CD_PS.

You can clear the drawing surface with the cdCanvasClear function, but in some drivers the function may just draw a rectangle using the
background color.

Coordinate System

You may retrieve the original canvas size using the cdCanvasGetSize function. The canvas' origin is at the bottom left corner of the canvas, but
an origin change can be simulated with function cdCanvasOrigin. Usually user interface libraries have their origin at the upper right corner,
oriented top down. In this case, the function cdCanvasUpdateYAxis converts the Y coordinate from this orientation to CD's orientation and
vice-versa.

Other

Some canvas contents can be interpreted; the cdCanvasPlay function interprets the contents of a canvas and calls library functions for the
contents to be displayed in the active canvas.

Canvas Initialization

cdCanvas *cdCreateCanvas(cdContext* ctx, void *data); [in C]

cd.CreateCanvas(ctx: number, data: string or userdata) -> (canvas: cdCanvas) [in Lua]

Creates a CD canvas for a virtual visualization surface (VVS). A VVS may be the canvas of a user-interface window, the page of a document
sent to a printer, an offscreen image, the clipboard, a metafile, and so on. To create the canvas, it is necessary to specify the driver in which each
canvas is implemented.

The driver is set by the driver variable with additional information provided in the data parameter. Even though it is possible to create more

than one canvas with the same driver/data pair, this is not recommended, and its behavior is not specified. Each canvas maintains its own

features.

In case of failure, a NULL value is returned. The following predefined drivers are available:

Window-Base Drivers

� CD_IUP = IUP Canvas (cdiup.h).
� CD_NATIVEWINDOW = Native Window (cdnative.h).

Device-Based Drivers

� CD_CLIPBOARD = Clipboard (cdclipbd.h).
� CD_PRINTER = Printer (cdprint.h).

Image-Based Drivers

� CD_IMAGE = Server-Image Drawing (cdimage.h).
� CD_IMAGERGB = Client-Image Drawing (cdirgb.h).
� CD_DBUFFER = Offscreen Drawing (cddbuf.h).

File-Based Drivers

� CD_CGM = Computer Graphics Metafile ISO (cdcgm.h).
� CD_DGN = MicroStation Design File (cddgn.h).
� CD_DXF = AutoCad Drawing Interchange File (cddxf.h).
� CD_EMF = Microsoft Windows Enhanced Metafile (cdemf.h). Works only in MS Windows systems.
� CD_METAFILE = Metafile Canvas Draw (cdmf.h).
� CD_PS = PostScript File (cdps.h).
� CD_WMF = Microsoft Windows Metafile (cdwmf.h).

cdCanvas* cdCreateCanvasf(cdContext *ctx, const char* format, ...); [in C]

[There is no equivalent in Lua]

Page 21 of 65

Same as cdCreateCanvas, used in the case that the parameter data is a string composed by several parameters. This function can be used with
parameters equivalent to the printf function from the default C library.

void cdKillCanvas(cdCanvas *canvas); [in C]

cd.KillCanvas(canvas: cdCanvas) [in Lua]

Destroys a previously created canvas. If this function is not called in Lua, the garbage collector will call it.

int cdCanvasActivate(cdCanvas *canvas); [in C]

canvas:Activate(canvas: cdCanvas) -> (status: number) [in Lua]

Activates a canvas for drawing. This is used only for a few drivers. Native Window and IUP drivers will update the canvas size if the window
size has changed. Double Buffer driver will recreate the image buffer if the window canvas size has changed. In these cases the function MUST
be called, for other drivers is useless. Returns CD_ERROR or CD_OK.

void cdCanvasDeactivate(cdCanvas* canvas); [in C]

canvas:Deactivate(canvas: cdCanvas) [in Lua]

Called when the application has finished drawing in the canvas. It is optional, but if used for the Native Window driver in Windows when the
handle can not be retained, the drawing can only be done again after a cdCanvasActivate. On some drivers will simply call Flush.

int cdUseContextPlus(int use); [in C]

cd.UseContextPlus(use: number) -> (old_use: number) [in Lua]

Activates or deactivates the use of an external context for the next calls of the cdCreateCanvas function.

void cdInitContextPlus(void); [in C]

cd.InitContextPlus() [in Lua]

Initializes the context driver to use another context replacing the standard drivers. This functions is only available when a library containing a
"ContextPlus" context driver is used. See the GDI+ base driver and the XRender base driver.

In Lua, when using require"cdluacontextplus" this function will be automatically called.

cdContext* cdCanvasGetContext(cdCanvas *canvas); [in C]

canvas:GetContext(canvas: cdCanvas) -> (ctx: number) [in Lua]

Returns the context of a given canvas, which can be compared with the predefined contexts, such as "CD_PS".

int cdContextCaps(cdContext* ctx); [in C]

cd.ContextCaps(ctx: number) -> (caps: number) [in Lua]

Returns the resources available for that context. To verify if a given resource is available, perform a binary AND ('&.html with the following
values:

CD_CAP_FLUSH
CD_CAP_CLEAR
CD_CAP_PLAY
CD_CAP_YAXIS - The Y axis has the same orientation as the CD axis.
CD_CAP_CLIPAREA
CD_CAP_CLIPPOLY - Usually is not implemented.
CD_CAP_MARK - Marks are implemented directly in the driver (they are usually simulated).
CD_CAP_RECT - Rectangles are implemented directly in the driver (they are usually simulated).
CD_CAP_VECTORTEXT - Vector text is implemented directly in the driver (it is usually simulated).
CD_CAP_IMAGERGB
CD_CAP_IMAGERGBA - If this is not implemented, but cdGetImageRGB is, then it is simulated using cdGetImageRGB and
cdPutImageRGB.
CD_CAP_IMAGEMAP
CD_CAP_GETIMAGERGB
CD_CAP_IMAGESRV - Usually is only implemented in contexts of window graphics systems (Native Window and IUP).
CD_CAP_BACKGROUND
CD_CAP_BACKOPACITY
CD_CAP_WRITEMODE
CD_CAP_LINESTYLE
CD_CAP_LINEWITH
CD_CAP_WD - Functions of world coordinates are implemented directly in the driver (they are usually simulated).
CD_CAP_HATCH
CD_CAP_STIPPLE
CD_CAP_PATTERN
CD_CAP_FONT
CD_CAP_FONTDIM - If not defined, the function is implemented using an internal heuristics of the library.
CD_CAP_TEXTSIZE - If not defined, the function is implemented using an internal heuristics of the library.
CD_CAP_TEXTORIENTATION - Usually is not implemented.
CD_CAP_PALETTE - Usually is only implemented in contexts of window graphics systems (Native Window and IUP).

Page 22 of 65

int cdCanvasSimulate(cdCanvas* canvas, int mode); [in C]

canvas:Simulate(mode: number) -> (old_mode: number) [in Lua]

Activates the simulation of one or more primitives. It is ignored for the canvas in the ImageRGB context, because in this case everything is
already simulated. It also has no effect for primitives that are usually simulated. It returns the previous simulation, but does not include
primitives that are usually simulated. The simulation can be activated at any moment. For instance, if a line simulation is required only for a
situation, the simulation can be activated for the line to be drawn, and then deactivated.

If simulation is activated the driver transformation matrix is disabled.

See in the Simulation sub-driver the information on how each simulation is performed.

To activate a given simulation, perform a binary OR ('|.html using one or more of the following values (in Lua, the values must be added
'+.html:

CD_SIM_NONE - Deactivates all kinds of simulation.
CD_SIM_LINE
CD_SIM_RECT
CD_SIM_BOX
CD_SIM_ARC
CD_SIM_SECTOR
CD_SIM_CHORD
CD_SIM_POLYLINE
CD_SIM_POLYGON
CD_SIM_TEXT
CD_SIM_ALL - Activates all simulation options.
CD_SIM_LINES - Combination of CD_SIM_LINE, CD_SIM_RECT, CD_SIM_ARC and CD_SIM_POLYLINE.
CD_SIM_FILLS - Combination of CD_SIM_BOX, CD_SIM_SECTOR, CD_SIM_CHORD and CD_SIM_POLYGON.

Extras

int cdlua_open(lua_State* L); [for Lua 5]

Initializes the CDLua binding. In Lua 5 the binding is lua state safe, this means that several states can be initialized any time.

int cdlua_close(lua_State* L); [for Lua 5]

Releases the memory allocated by the CDLua binding.

cdCanvas* cdlua_checkcanvas(lua_State* L, int pos); [for Lua 5]

Returns the canvas in the Lua stack at position pos. The function will call lua_error if there is not a valid canvas in the stack at the given
position.

void cdlua_pushcanvas(lua_State* L, cdCanvas* canvas);

Pushes the given canvas into the stack.

Canvas Control

void cdCanvasClear(cdCanvas* canvas); [in C]

canvas:Clear() [in Lua]

Cleans the active canvas using the current background color. This action is interpreted very differently by each driver. Many drivers simply
draw a rectangle with the current background color. It is NOT necessary to call cdClear when the canvas has just been created, as at this
moment it is already clean. Most file-based drivers do not implement this function.

void cdCanvasFlush(cdCanvas* canvas); [in C]

canvas:Flush() [in Lua]

Has a different meaning for each driver. It is useful to send information to buffered devices and to move to a new page or layer. In all cases, the
current canvas attributes are preserved.

cdState* cdCanvasSaveState(cdCanvas* canvas); [in C]

canvas:SaveState() -> (state: cdState) [in Lua]

Saves the state of attributes of the active canvas. It does not save cdPlay callbacks, polygon creation states (begin/vertex/vertex/...), the palette,
complex clipping regions and driver internal attributes.

void cdCanvasRestoreState(cdCanvas* canvas, cdState* state); [in C]

canvas:RestoreState(state: cdState) [in Lua]

Restores the attribute state of the active canvas. It can be used between canvases of different contexts. It can be used several times for the same
state.

void cdReleaseState(cdState* state); [in C]

Page 23 of 65

cd.ReleaseState(state: cdState) [in Lua]

Releases the memory allocated by the cdSaveState function. If this function is not called in Lua, the garbage collector will call it.

void cdCanvasSetAttribute(cdCanvas* canvas, const char* name, char* data); [in C]

canvas:SetAttribute(name, data: string) [in Lua]

Modifies a custom attribute directly in the driver of the active canvas. If the driver does not have this attribute, the call is ignored.

void cdCanvasSetfAttribute(cdCanvas* canvas, const char* name, const char* format, ...); [in C]

[There is no equivalent in Lua]

Same as cdSetAttribute, used for the case in which the parameter data is a string composed by several parameters. It can be used with
parameters equivalent to those of the printf function from the standard C library.

char* cdCanvasGetAttribute(cdCanvas* canvas, const char* name); [in C]

canvas:SetAttribute(name: string) -> (data: string) [in Lua]

Returns a custom attribute from the driver of the active canvas. If the driver does not have this attribute, it returns NULL.

Coordinate System

void cdCanvasGetSize(cdCanvas* canvas, int *width, int *height, double *width_mm, double *height_mm); [in C]

canvas:GetSize() -> (width, height, mm_width, mm_height: number) [in Lua]

Returns the canvas size in pixels and in millimeters. You can provide only the desired values and NULL for the others.

int cdCanvasUpdateYAxis(cdCanvas* canvas, int *y); [in C]

double cdfCanvasUpdateYAxis(cdCanvas* canvas, double *y); [in C]

int cdCanvasInvertYAxis(cdCanvas* canvas, int y); [in C]

double cdfCanvasInvertYAxis(cdCanvas* canvas, double y); [in C]

canvas:UpdateYAxis(yc: number) -> (yr: number) [in Lua]

canvas:InvertYAxis(yc: number) -> (yr: number) [in Lua]

In some graph systems, the origin is at the upper left corner of the canvas, with the direction of the Y axis pointing down. In this case, the
function converts the coordinate system of the CD library into the internal system of the active canvas' driver, and the other way round. If this is
not the case, nothing happens. This is just "y = height-1 - y". It returns the changed value. The "Invert" will always invert the given value, the
"Update" function will invert only if the canvas has the Y axis inverted.

void cdCanvasMM2Pixel(cdCanvas* canvas, double mm_dx, double mm_dy, int *dx, int *dy); [in C]

void cdfCanvasMM2Pixel(cdCanvas* canvas, double mm_dx, double mm_dy, double *dx, double *dy); [in C]

canvas:MM2Pixel(mm_dx, mm_dy: number) -> (dx, dy: number) [in Lua]

canvas:fMM2Pixel(mm_dx, mm_dy: number) -> (dx, dy: number) [in Lua]

Converts sizes in millimeters into pixels (canvas coordinates). You can provide only the desired values and NULL for the others.

void cdCanvasPixel2MM(cdCanvas* canvas, int dx, int dy, double *mm_dx, double *mm_dy); [in C]

void cdfCanvasPixel2MM(cdCanvas* canvas, double dx, double dy, double *mm_dx, double *mm_dy); [in C]

canvas:Pixel2MM(dx, dy: number) -> (mm_dx, mm_dy: number) [in Lua]

canvas:fPixel2MM(dx, dy: number) -> (mm_dx, mm_dy: number) [in Lua]

Converts sizes in pixels (canvas coordinates) into millimeters. You can provide only the desired values and NULL for the others. Use this
function to obtain the horizontal and vertical resolution of the canvas by passing 1 as parameter in dx and dy. The resolution value is obtained
using the formula res=1.0/mm.

void cdCanvasOrigin(cdCanvas* canvas, int x, int y); [in C]

void cdfCanvasOrigin(cdCanvas* canvas, double x, double y); [in C]

canvas:Origin(x, y: number) [in Lua]

canvas:fOrigin(x, y: number) [in Lua]

Allows translating the origin - for instance, to the center of the canvas. The function profits from the architecture of the library to simulate a
translation of the origin, which in fact is never actually passed to the canvas in the respective driver. Default values: (0, 0)

void cdCanvasGetOrigin(cdCanvas* canvas, int *x, int *y); [in C]

void cdfCanvasGetOrigin(cdCanvas* canvas, double *x, double *y); [in C]

canvas:GetOrigin() -> (x, y: number) [in Lua]

canvas:fGetOrigin() -> (x, y: number) [in Lua]

Returns the origin.

Transformation Matrix

void cdCanvasTransform(cdCanvas* canvas, const double* matrix); [in C]

Page 24 of 65

canvas:Transform(matrix: table) [in Lua]

Defines a transformation matrix with 6 elements. If the matrix is NULL, the transformation is reset to the identity. Default value: NULL.

The matrix contains scale, rotation and translation elements as follows:

|x'| |sx*cos(angle) -sin(angle) dx| |x| |0 2 4|

|y'| = | sin(angle) sy*cos(angle) dy| * |y| with indices |1 3 5|

 |1|

But notice that the indices are different of the cdCanvasVectorTextTransform.

Functions that retrieve images from the canvas are not affected by the transformation matrix, such as GetImage, GetImageRGB and
ScrollArea.

Transformation matrix is independent of the World Coordinate and Origin functions. And those are affected if a transformation is set, just like
other regular primitives.

double* cdCanvasGetTransform(cdCanvas* canvas); [in C]

canvas:GetTransformation() -> (matrix: table) [in Lua]

Returns the transformation matrix. If the identity is set, returns NULL.

void cdCanvasTransforMultiply(cdCanvas* canvas, const double* matrix); [in C]

canvas:TransformMultiply(matrix: table) [in Lua]

Left multiply the current transformation by the given transformation.

void cdCanvasTransformTranslate(cdCanvas* canvas, double dx, double dy); [in C]

canvas:TransformTranslate(dx, dy: number) [in Lua]

Applies a translation to the current transformation.

void cdCanvasTransformScale(cdCanvas* canvas, double sx, double sy); [in C]

canvas:TransformScale(sx, sy: number) [in Lua]

Applies a scale to the current transformation.

void cdCanvasTransformRotate(cdCanvas* canvas, double angle); [in C]

canvas:TransformRotate(angle: number) [in Lua]

Applies a rotation to the current transformation. Angle is in degrees, oriented counter-clockwise from the horizontal axis.

void cdCanvasTransformPoint(cdCanvas* canvas, int x, int y, int *tx, int *ty); [in C]

void cdfCanvasTransformPoint(cdCanvas* canvas, double x, double y, double *tx, double *ty); [in C]

canvas:TransformPoint(x, y: number) -> (tx, ty: number) [in Lua]

canvas:fTransformPoint(x, y: number) -> (tx, ty: number) [in Lua]

Applies a transformation to a given point.

World Coordinates

Allows the use of a World Coordinate System. In this system you can attribute coordinates to any unit you want. After you define a window
(rectangular region) in your world, each given coordinate is then mapped to canvas coordinates to draw the primitives. You can define a
viewport in your canvas to change the coordinate mapping from world to canvas. The image below shows the relation between Window and
Viewport.

Window x Viewport

If you want to map coordinates from one system to another, use the wdWorld2Canvas e wdCanvas2World functions.

The quality of the picture depends on the conversion from World to Canvas, so if the canvas has a small size the picture quality will be poor. To
increase picture quality create a canvas with a larger size, if possible.

All World Coordinate drawing in all drivers are simulated using other CD primitives.

void wdCanvasWindow(cdCanvas* canvas, double xmin, double xmax, double ymin, double ymax); [in C]

Page 25 of 65

canvas:wWindow(xmin, xmax, ymin, ymax: number) [in Lua]

Configures a window in the world coordinate system to be used to convert world coordinates (with values in real numbers) into canvas
coordinates (with values in integers). The default window is the size in millimeters of the whole canvas.

void wdCanvasGetWindow(cdCanvas* canvas, double *xmin, double *xmax, double *ymin, double *ymax); [in C]

canvas:wGetWindow() -> (xmin, xmax, ymin, ymax: number) [in Lua]

Queries the current window in the world coordinate system being used to convert world coordinates into canvas coordinates (and the other way
round). It is not necessary to provide all return pointers, you can provide only the desired values.

void wdCanvasViewport(cdCanvas* canvas, int xmin, int xmax, int ymin, int ymax); [in C]

canvas:wViewport(xmin, xmax, ymin, ymax: number) [in Lua]

Configures a viewport in the canvas coordinate system to be used to convert world coordinates (with values in real numbers) into canvas
coordinates (with values in integers). The default viewport is the whole canvas (0,w-1,0,h-1). If the canvas size is changed, the viewport will not
be automatically updated.

void wdCanvasGetViewport(cdCanvas* canvas, int *xmin, int *xmax, int *ymin, int *ymax); [in C]

canvas:wGetViewport() -> (xmin, xmax, ymin, ymax: number) [in Lua]

Queries the current viewport in the world coordinate system being used to convert world coordinates into canvas coordinates (and the other way
round). It is not necessary to provide all return pointers, you can provide only the desired values and NULL for the others.

void wdCanvasWorld2Canvas(cdCanvas* canvas, double xw, double yw, int *xv, int *yv); [in C]

canvas:wWorld2Canvas(xw, yw: number) -> (xv, yv: number) [in Lua]

Converts world coordinates into canvas coordinates. It is not necessary to provide all return pointers, you can provide only the desired values
and NULL for the others.

void wdCanvasCanvas2World(cdCanvas* canvas, int xv, int yv, double *xw, double *yw); [in C]

canvas:wCanvas2World(xv, yv: number) -> (xw, yw: number) [in Lua]

Converts canvas coordinates into world coordinates. It is not necessary to provide all return pointers, you can provide only the desired values
and NULL for the others.

Extra

void wdCanvasHardcopy(cdCanvas *canvas, cdContext* ctx, void *data, void(*draw_func)(cdCanvas *canvas_copy)); [in C]

canvas:wCanvasHardcopy(ctx: number, data: string or userdata, draw_func: function) [in Lua]

Creates a new canvas, prepares Window and Viewport according to the provided canvas, maintaining the aspect ratio and making the drawing
occupy the largest possible area of the new canvas, calls the drawing function (which must use routines in WC) and, finally, removes the new
canvas.

It is usually used for "hard copies" of drawings (print equivalent copy). The most common used contexts are Printer, PS and PDF.

General Attributes

long int cdCanvasForeground(cdCanvas* canvas, long int color); [in C]

void cdCanvasSetForeground(cdCanvas* canvas, long int color); [in C]

canvas:Foreground(color: lightuserdata) -> (old_color: lightuserdata) [in Lua]

canvas:SetForeground(color: lightuserdata) [in Lua]

Configures a new current foreground color and returns the previous one. This color is used in all primitives (lines, areas, marks and text).
Default value: CD_BLACK. Value CD_QUERY simply returns the current value.

Notice that CD_QUERY conflicts with color RGBA=(255,255,255,255) (full transparent white). Use SetForeground to avoid the conflict. See
also Color Coding.

long int cdCanvasBackground(cdCanvas* canvas, long int color); [in C]

void cdCanvasSetBackground(cdCanvas* canvas, long int color); [in C]

canvas:Background(color: lightuserdata) -> (old_color: lightuserdata) [in Lua]

canvas:SetBackground(color: lightuserdata) [in Lua]

Configures the new current background color and returns the previous one. However, it does not automatically change the background of a
canvas. For such, it is necessary to call the Clear function. The background color only makes sense for Clear and for primitives affected by the

background opacity attribute. Default value: CD_WHITE. Value CD_QUERY simply returns the current value.

Notice that CD_QUERY conflicts with color RGBA=(255,255,255,255) (full transparent white). Use SetBackground to avoid the conflict. See
also Color Coding.

int cdCanvasWriteMode(cdCanvas* canvas, int mode); [in C]

canvas:WriteMode(mode: number) -> (old_mode: number) [in Lua]

Page 26 of 65

Defines the writing type for all drawing primitives. Values: CD_REPLACE, CD_XOR or CD_NOT_XOR. Returns the previous value. Default value:

CD_REPLACE. Value CD_QUERY simply returns the current value.

Note: operation XOR is very useful, because, using white as the foreground color and drawing the same image twice, you can go back to the
original color, before the drawing. This is commonly used for mouse selection feedback.

Clipping

The clipping area is an area that limits the available drawing area inside the canvas. Any primitive is drawn only inside the clipping area. It
affects all primitives.

You can set the clipping area by using the function cdClipArea, and retrieve it using cdGetClipArea. The clipping area is a rectangle by
default, but it can has other shapes. In some drivers a polygon area can be defined, and in display based drivers a complex region can be defined.
The complex region can be a combination of boxes, polygons, sectors, chords and texts.

The cdClip function activates and deactivaes the clipping.

int cdCanvasClip(cdCanvas* canvas, int mode); [in C]

canvas:Clip(mode: number) -> (old_mode: number) [in Lua]

Activates or deactivates clipping. Returns the previous status. Values: CD_CLIPAREA, CD_CLIPPOLYGON, CD_CLIPREGION or
CD_CLIPOFF. The value CD_QUERY simply returns the current status. Default value: CD_CLIPOFF.

The value CD_CLIPAREA activates a rectangular area as the clipping region.

The value CD_CLIPPOLYGON activates a polygon as a clipping region, but works only in some drivers (please refer to the notes of each
driver). The clipping polygon must be defined before activating the polygon clipping; if it is not defined, the current clipping state remains
unchanged. See the documentation of cdBegin/cdVertex/cdEnd to create a polygon.

The value CD_CLIPREGION activates a complex clipping region. See the documentation of Regions.

void cdCanvasClipArea(cdCanvas* canvas, int xmin, int xmax, int ymin, int ymax); [in C]

void cdfCanvasClipArea(cdCanvas* canvas, double xmin, double xmax, double ymin, double ymax); [in C]

void wdCanvasClipArea(cdCanvas* canvas, double xmin, double xmax, double ymin, double ymax); (WC) [in C]

canvas:ClipArea(xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wClipArea(xmin, xmax, ymin, ymax: number) (WC) [in Lua]

Defines a rectangle for clipping. Only the points in the interval xmin<= x <= xmax and ymin <= y <= ymax will be printed. Default region: (0,
w-1, 0, h-1).

int cdCanvasGetClipArea(cdCanvas* canvas, int *xmin, int *xmax, int *ymin, int *ymax); [in C]

int cdfCanvasGetClipArea(cdCanvas* canvas, double *xmin, double *xmax, double *ymin, double *ymax); [in C]

int wdCanvasGetClipArea(cdCanvas* canvas, double *xmin, double *xmax, double *ymin, double *ymax); (WC) [in C]

canvas:GetClipArea() -> (xmin, xmax, ymin, ymax, status: number) [in Lua]

canvas:wGetClipArea() -> (xmin, xmax, ymin, ymax, status: number) (WC) [in Lua]

Returns the rectangle and the clipping status. It is not necessary to provide all return pointers, you can provide only the desired values and
NULL for the others.

Polygons

A polygon for clipping can be created using cdBegin(CD_CLIP)/cdVertex(x,y)/.../cdEnd().

See the documentation of cdBegin/cdVertex/cdEnd.

Complex Clipping Regions

A complex region can composed of boxes, sectors, chords, polygons and texts. It is implemented only in the Windows GDI, GDI+ and X-
Windows base drivers.

Complex clipping regions can be created using cdBegin(CD_REGION)/(filled primtives)/.../cdEnd(). For more about cdBegin and cdEnd see

Polygons.

Between a cdBegin(CD_REGION) and a cdEnd(), all calls to cdBox, cdSector, cdChord, cdBegin(CD_FILL)/cdVertex(x,y)/.../cdEnd() and

cdText will be composed in a region for clipping. This is the only exception when you can call a cdBegin after another cdBegin.

When you call cdBegin(CD_REGION) a new empty region will be created. So for the first operation you should use CD_UNION or

CD_NOTINTERSECT combine modes. When you finished to compose the region call cdEnd().

To make the region active you must call cdClip(CD_CLIPREGION). For other clipping regions see Clipping.

Complex clipping regions are not saved by cdSaveState.

int cdCanvasRegionCombineMode(cdCanvas* canvas, int mode); [in C]

Page 27 of 65

canvas:RegionCombineMode(mode: number) -> (old_mode: number) [in Lua]

Changes the way regions are combined when created. Returns the previous status. Values: CD_UNION, CD_INTERSECT, CD_DIFFERENCE or

CD_NOTINTERSECT. The value CD_QUERY simply returns the current status. Default value: CD_UNION.

Combine Modes

int cdCanvasIsPointInRegion(cdCanvas* canvas, int x, int y); [in C]

canvas:IsPointInRegion(x, y: number) -> (status: number) [in Lua]

Returns a non zero value if the point is contained inside the current region.

void cdCanvasOffsetRegion(cdCanvas* canvas, int dx, int dy); [in C]

void wdCanvasOffsetRegion(cdCanvas* canvas, double dx, double dy); (WC) [in C]

canvas:OffsetRegion(dx, dy: number) [in Lua]

canvas:wOffsetRegion(dx, dy: number) (WC) [in Lua]

Moves the current region by the given offset. In X-Windows, if the region moves to outside the canvas border, the part moved outside will be
lost, the region will need to be reconstruted.

void cdCanvasGetRegionBox(cdCanvas* canvas, int *xmin, int *xmax, int *ymin, int *ymax); [in C]

void wdCanvasGetRegionBox(cdCanvas* canvas, double *xmin, double *xmax, double *ymin, double *ymax); (WC) [in C]

canvas:GetRegionBox() -> (xmin, xmax, ymin, ymax, status: number) [in Lua]

canvas:wGetRegionBox() -> (xmin, xmax, ymin, ymax, status: number) (WC) [in Lua]

Returns the rectangle of the bounding box of the current region. It is not necessary to provide all return pointers, you can provide only the
desired values and NULL for the others.

Marks

A mark is a punctual representation. It can have different sizes and types. All types are affected only by mark attributes and by the foreground
color.

All marks in all drivers are simulated using other CD primitives, except cdPixel.

void cdCanvasPixel(cdCanvas* canvas, int x, int y, long int color); [in C]

void wdCanvasPixel(cdCanvas* canvas, double x, double y, long int color); (WC) [in C]

canvas:Pixel(x, y: number, color: lightuserdata) [in Lua]

canvas:wPixel(x, y: number, color: lightuserdata) (WC) [in Lua]

Configures the pixel (x,y) with the color defined by color. It is the smallest element of the canvas. It depends only on global attributes of the
canvas.

void cdCanvasMark(cdCanvas* canvas, int x, int y); [in C]

void wdCanvasMark(cdCanvas* canvas, double x, double y); (WC) [in C]

canvas:Mark(x, y: number) [in Lua]

canvas:wMark(x, y: number) (WC) [in Lua]

Draws a mark in (x,y) using the current foreground color. It is not possible to use this function between a call to functions cdBegin and cdEnd
if the type of mark is set to CD_DIAMOND. If the active driver does not include this primitive, it will be simulated using other primitives from
the library, such as cdLine.

If you will call function cdMark or wdMark several times in a sequence, then it is recommended that the application changes the filling and
line attributes to those used by the cdMark function:

cdInteriorStyle(CD_SOLID);

cdLineStyle(CD_CONTINUOUS);

cdLineWidth(1);

Page 28 of 65

This will greatly increase this function's performance. Also in this case, if the mark is very small, we suggest using the cdPixel function so that
the application itself draws the mark. In many cases, this also increases this function's performance.

Attributes

int cdCanvasMarkType(cdCanvas* canvas, int type); [in C]

canvas:MarkType(type: number) -> (old_type: number) [in Lua]

Configures the current mark type for: CD_PLUS, CD_STAR, CD_CIRCLE, CD_X, CD_BOX, CD_DIAMOND,
CD_HOLLOW_CIRCLE, CD_HOLLOW_BOX or CD_HOLLOW_DIAMOND. Returns the previous value. Default value: CD_STAR.
Value CD_QUERY simply returns the current value.

Mark Types

int cdCanvasMarkSize(cdCanvas* canvas, int size); [in C]

double wdCanvasMarkSize(cdCanvas* canvas, double size); (WC) [in C]

canvas:MarkSize(size: number) -> (old_size: number) [in Lua]

canvas:wMarkSize(size: number) -> (old_size: number) (WC) [in Lua]

Configures the mark size in pixels. Returns the previous value. Default value: 10. Value CD_QUERY simply returns the current value. Valid
width interval: >= 1.

In WC, it configures the current line width in millimeters.

Lines

Line are segments that connects 2 or more points. The Line function includes the 2 given points and draws the line using the foreground color.
Line thickness is controlled by the LineWidth function. By using function LineStyle you can draw dashed lines with some variations. Lines
with a style other than continuous are affected by the back opacity attribute and by the background color.

void cdCanvasLine(cdCanvas* canvas, int x1, int y1, int x2, int y2); [in C]

void cdfCanvasLine(cdCanvas* canvas, double x1, double y1, double x2, double y2); [in C]

void wdCanvasLine(cdCanvas* canvas, double x1, double y1, double x2, double y2); (WC) [in C]

canvas:Line(x1, y1, x2, y2: number) [in Lua]

canvas:fLine(x1, y1, x2, y2: number) [in Lua]

canvas:wLine(x1, y1, x2, y2: number) (WC) [in Lua]

Draws a line from (x1,y1) to (x2,y2) using the current foreground color and line width and style. Both points are included in the line.

Polygons and Bezier Lines

Open polygons can be created using cdBegin(CD_OPEN_LINES)/cdVertex(x,y)/.../cdEnd().

Closed polygons use the same number of vertices but the last point is automatically connected to the first point. Closed polygons can be created
using cdBegin(CD_CLOSED_LINES)/cdVertex(x,y)/.../cdEnd().

Bezier lines can be created using cdBegin(CD_BEZIER)/cdVertex(x,y)/.../cdEnd(). At least 4 vertices must be defined. The two vertices of
the middle are the control vertices. A sequence of bezier lines can be defined using more 3 vertices, two control points and an end point, the last
point of the previous bezier will be used as the start point.

See the documentation of cdBegin/cdVertex/cdEnd.

void cdCanvasRect(cdCanvas* canvas, int xmin, int xmax, int ymin, int ymax); [in C]

void cdfCanvasRect(cdCanvas* canvas, double xmin, double xmax, double ymin, double ymax); [in C]

void wdCanvasRect(cdCanvas* canvas, double xmin, double xmax, double ymin, double ymax); (WC) [in C]

canvas:Rect(xmin, xmax, ymin, ymax: number) [in Lua]

canvas:fRect(xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wRect(xmin, xmax, ymin, ymax: number) (WC) [in Lua]

Draws a rectangle with no filling. All points in the limits of interval x_min<=x<=x_max, y_min<=y<=y_max will be painted. It is affected by
line attributes and the foreground color. If the active driver does not include this primitive, it will be simulated using the cdLine primitive.

void cdCanvasArc(cdCanvas* canvas, int xc, int yc, int w, int h, double angle1, double angle2); [in C]

void cdfCanvasArc(cdCanvas* canvas, double xc, double yc, double w, double h, double angle1, double angle2); [in C]

void wdCanvasArc(cdCanvas* canvas, double xc, double yc, double w, double h, double angle1, double angle2); (WC) [in C]

canvas:Arc(xc, yc, w, h, angle1, angle2: number) [in Lua]

canvas:fArc(xc, yc, w, h, angle1, angle2: number) [in Lua]

Page 29 of 65

canvas:wArc(xc, yc, w, h, angle1, angle2: number) (WC) [in Lua]

Draws the arc of an ellipse aligned with the axis, using the current foreground color and line width and style. It is drawn counter-clockwise. The
coordinate (xc,yc) defines the center of the ellipse. Dimensions w and h define the elliptic axes X and Y, respectively.

Angles angle1 and angle2, in degrees define the arc's beginning and end, but they are not the angle relative to the center, except when w==h
and the ellipse is reduced to a circle. The arc starts at the point (xc+(w/2)*cos(angle1),yc+(h/2)*sin(angle1)) and ends at (xc+(w/2)*cos
(angle2),yc+(h/2)*sin(angle2)). A complete ellipse can be drawn using 0 and 360 as the angles.

The angles are specified so if the size of the ellipse (w x h) is changed, its shape is preserved. So the angles relative to the center are dependent
from the ellipse size. The actual angle can be obtained using rangle = atan2((h/2)*sin(angle),(w/2)*cos(angle)).

The angles are given in degrees. To specify the angle in radians, you can use the definition CD_RAD2DEG to multiply the value in radians before
passing the angle to CD.

Arc Parameters

Attributes

int cdCanvasLineStyle(cdCanvas* canvas, int style); [in C]

canvas:LineStyle(style: number) -> (old_style: number) [in Lua]

Configures the current line style for: CD_CONTINUOUS, CD_DASHED, CD_DOTTED, CD_DASH_DOT, CD_DASH_DOT_DOT, or
CD_CUSTOM. Returns the previous value. Default value: CD_CONTINUOUS. Value CD_QUERY simply returns the current value. When

CD_CUSTOM is used the cdLineStyleDahes function must be called before to initialize the custom dashes. The spaces are drawn with the
background color, except when back opacity is transparent then the background is left unchanged. See BackOpacity.

Line Styles

void cdCanvasLineStyleDashes(cdCanvas* canvas, const int* dashes, int count); [in C]

canvas:LineStyleDashes(dashes: table, count: number) -> (old_style: number) [in Lua]

Defines the custom line style dashes. The first value is the lenght of the first dash, the second value is the leght of the first space, and so on. For
example: "10 2 5 2" means dash size 10, space size 2, dash size 5, space size 2, and repeats the pattern.

int cdCanvasLineWidth(cdCanvas* canvas, int width); [in C]

double wdCanvasLineWidth(double width_mm); (WC) [in C]

canvas:LineWidth(width: number) -> (old_width: number) [in Lua]

canvas:wLineWidth(width_mm: number) -> (old_width_mm: number) (WC) [in Lua]

Configures the width of the current line (in pixels). Returns the previous value. Default value: 1. Value CD_QUERY simply returns the current
value. Valid width interval: >= 1.

In WC, it configures the current line width in millimeters.

int cdCanvasLineJoin(cdCanvas* canvas, int style); [in C]

canvas:LineJoin(style: number) -> (old_style: number) [in Lua]

Configures the current line style for: CD_MITER, CD_BEVEL or CD_ROUND. Returns the previous value. Default value: CD_MITER. Value

CD_QUERY simply returns the current value.

Line Joins

int cdCanvasLineCap(cdCanvas* canvas, int style); [in C]

canvas:LineCap(style: number) -> (old_style: number) [in Lua]

Configures the current line style for: CD_CAPFLAT, CD_CAPSQUARE or CD_CAPROUND. Returns the previous value. Default value:

CD_CAPFLAT. Value CD_QUERY simply returns the current value.

Page 30 of 65

Line Caps

Open, Closed and Filled Polygons,
Bezier Lines and
Regions Creation

The functions cdBegin, cdVertex and cdEnd are use for many situations. cdBegin is called once, cdVertex can be called many times, and
cdEnd is called once to actually do something. If you call cdBegin again before cdEnd the process is restarted, except for cdBegin
(CD_REGION) that can contains one or more polygons inside.

void cdCanvasBegin(cdCanvas* canvas, int mode); [in C]

canvas:Begin(mode: number) [in Lua]

Starts defining a polygon to be drawn (or filled) according to the mode: CD_CLOSED_LINES, CD_OPEN_LINES, CD_FILL, CD_CLIP,
CD_REGION or CD_BEZIER. Do not create embedded polygons, that is, do not call function cdBegin twice without a call to cdEnd in
between.

� CD_OPEN_LINES: connects all the points at cdEnd. Depends on line width and line style attributes.
� CD_CLOSED_LINES: connects all the points at cdEnd and connects the last point to the first. Depends on line width and line style

attributes.
� CD_FILL: connects the last point to the first and fills the resulting polygon according to the current interior style. When the interior style

CD_HOLLOW is defined the it behaves as if the mode were CD_CLOSED_LINES.
� CD_CLIP: instead of creating a polygon to be drawn, creates a polygon to define a polygonal clipping region.
� CD_BEZIER: defines the points of a bezier curve. There must be at least 4 points: start, control, control and end. To specify a sequence

of curves use 3 more points for each curve: control, control, end, control, control, end, ... The end point is used as start point for the next
curve.

� CD_REGION: starts the creation of a complex region for clipping. All calls to cdBox, cdSector, cdChord, Filled Polygons and cdText
will be composed in a region for clipping. See Regions documentation.

Open, Closed and Filled Polygons

Bezier Lines

void cdCanvasVertex(cdCanvas* canvas, int x, int y); [in C]

void cdfCanvasVertex(cdCanvas* canvas, double x, double y); [in C]

void wdCanvasVertex(cdCanvas* canvas, double x, double y); (WC) [in C]

canvas:Vertex(x, y: number) [in Lua]

canvas:wVertex(x, y: number) (WC) [in Lua]

Adds a vertex to the polygon definition.

void cdCanvasEnd(cdCanvas* canvas); [in C]

canvas:End() [in Lua]

Ends the polygon's definition and draws it.

Filled Areas

It is an area filled with the foreground color, but it depends on the current interior style. The SOLID style depends only on the foreground color.

Page 31 of 65

The HATCH and STIPPLE style depend on the foreground color, background color and on the back opacity attribute. The hatch lines drawn
with this style do not depend on the other line attributes. The PATTERN style depends only on global canvas attributes.

The filled area includes the line at the edge of the area. So if you draw a filled rectangle, sector or polygon on top of a non filled one using the
same coordinates, no style and 1 pixel width, the non filled primitive should be obscured by the filled primitive. But depending on the driver
implementation some pixels at the edges may be not included. IMPORTANT: In the Postscript and PDF drivers the line at the edge is not
included at all.

If either the background or the foreground color are modified, the hatched and monochromatic fillings must be modified again in order to be
updated.

Note that when a Filling Attribute is modified, the active filling style is now that of the modified attribute (hatch, stipple or pattern). Notice that
this is not true for the clipping area. When the clipping area is modified, the clipping is only affected if it is active.

Filled Polygons

Filled polygons can be created using cdBegin(CD_FILL)/cdVertex(x,y)/.../cdEnd().

See the documentation of cdBegin/cdVertex/cdEnd.

void cdCanvasBox(cdCanvas* canvas, int xmin, int xmax, int ymin, int ymax); [in C]

void cdfCanvasBox(cdCanvas* canvas, double xmin, double xmax, double ymin, double ymax); [in C]

void wdCanvasBox(cdCanvas* canvas, double xmin, double xmax, double ymin, double ymax); (WC) [in C]

canvas:Box(xmin, xmax, ymin, ymax: number) [in Lua]

canvas:fBox(xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wBox(xmin, xmax, ymin, ymax: number) (WC) [in Lua]

Fills a rectangle according to the current interior style. All points in the interval x_min<=x<=x_max, y_min<=y<=y_max will be painted.
When the interior style CD_HOLLOW is defined, the function behaves like its equivalent cdRect.

void cdCanvasSector(cdCanvas* canvas, int xc, int yc, int w, int h, double angle1, double angle2); [in C]

void cdfCanvasSector(cdCanvas* canvas, double xc, double yc, double w, double h, double angle1, double angle2); [in C]

void wdCanvasSector(cdCanvas* canvas, double xc, double yc, double w, double h, double angle1, double angle2); (WC) [in C]

canvas:Sector(xc, yc, w, h, angle1, angle2: number) [in Lua]

canvas:fSector(xc, yc, w, h, angle1, angle2: number) [in Lua]

canvas:wSector(xc, yc, w, h, angle1, angle2: number) (WC) [in Lua]

Fills the arc of an ellipse aligned with the axis, according to the current interior style, in the shape of a pie. It is drawn counter-clockwise. The
coordinate (xc,yc) defines the center of the ellipse. Dimensions w and h define the elliptic axes X and Y, respectively.

Angles angle1 and angle2, in degrees, define the arc's beginning and end, but they are not the angle relative to the center, except when w==h
and the ellipse is reduced to a circle. The arc starts at the point (xc+(w/2)*cos(angle1),yc+(h/2)*sin(angle1)) and ends at (xc+(w/2)*cos
(angle2),yc+(h/2)*sin(angle2)). A complete ellipse can be drawn using 0 and 360 as the angles.

The angles are specified so if the size of the ellipse (w x h) is changed, its shape is preserved. So the angles relative to the center are dependent
from the ellipse size. The actual angle can be obtained using rangle = atan2((h/2)*sin(angle),(w/2)*cos(angle)).

The angles are given in degrees. To specify the angle in radians, you can use the definition CD_RAD2DEG to multiply the value in radians before
passing the angle to CD.

When the interior style CD_HOLLOW is defined, the function behaves like its equivalent cdArc, plus two lines connecting to the center.

Sector Parameters

void cdCanvasChord(cdCanvas* canvas, int xc, int yc, int w, int h, double angle1, double angle2); [in C]

void cdfCanvasChord(cdCanvas* canvas, double xc, double yc, double w, double h, double angle1, double angle2); [in C]

void wdCanvasChord(cdCanvas* canvas, double xc, double yc, double w, double h, double angle1, double angle2); (WC) [in C]

canvas:Chord(xc, yc, w, h, angle1, angle2: number) [in Lua]

canvas:fChord(xc, yc, w, h, angle1, angle2: number) [in Lua]

canvas:wChord(xc, yc, w, h, angle1, angle2: number) (WC) [in Lua]

Fills the arc of an ellipse aligned with the axis, according to the current interior style, the start and end points of the arc are connected. The
parameters are the same as the cdSector.

When the interior style CD_HOLLOW is defined, the function behaves like its equivalent cdArc, plus a line connecting the arc start and end
points.

Chord Parameters

Page 32 of 65

Attributes

int cdCanvasBackOpacity(cdCanvas* canvas, int opacity); [in C]

canvas:BackOpacity(opacity: number) -> (old_opacity: number) [in Lua]

Configures the background opacity to filling primitives based on the foreground and background colors. Values: CD_TRANSPARENT or
CD_OPAQUE. If it is opaque the primitive will erase whatever is in background with the background color. If it is transparent, only the
foreground color is painted. It returns the previous value. Default value: CD_TRANSPARENT. Value CD_QUERY simply returns the current
value. In some drivers is always opaque.

Back Opacity Attribute

int cdCanvasFillMode(cdCanvas* canvas, int mode); [in C]

canvas:FillMode(mode: number) -> (old_mode: number) [in Lua]

Selects a predefined polygon fill rule (CD_EVENODD or CD_WINDING). Returns the previous value. Default value: CD_EVENODD.
Value CD_QUERY simply returns the current value.

Fill Modes

int cdCanvasInteriorStyle(cdCanvas* canvas, int style); [in C]

canvas:InteriorStyle(style: number) -> (old_style: number) [in Lua]

Configures the current style for the area filling primitives: CD_SOLID, CD_HOLLOW, CD_HATCH, CD_STIPPLE or CD_PATTERN.
Note that CD_HATCH and CD_STIPPLE are affected by the backopacity. It returns the previous value. Default value: CD_SOLID. Value
CD_QUERY simply returns the current value.

If a stipple or a pattern were not defined, when they are selected the state of the attribute is not changed.

When the style CD_HOLLOW is defined, functions cdBox and cdSector behave as their equivalent cdRect and cdArc+Lines, and the
polygons with style CD_FILL behave like CD_CLOSED_LINES.

int cdCanvasHatch(cdCanvas* canvas, int style); [in C]

canvas:Hatch(style: number) -> (old_style: number) [in Lua]

Selects a predefined hatch style (CD_HORIZONTAL, CD_VERTICAL, CD_FDIAGONAL, CD_BDIAGONAL, CD_CROSS or
CD_DIAGCROSS) and sets the interior style to CD_HATCH. The lines are drawn with the foreground color, and the background is drawn
with the background color if back opacity is opaque. Returns the previous value. Default value: CD_HORIZONTAL. Value CD_QUERY
simply returns the current value. The foreground and background colors must be set before setting the style. In some drivers is always opaque.

Hatch Styles

Page 33 of 65

void cdCanvasStipple(cdCanvas* canvas, int w, int h, const unsigned char *fgbg) [in C]

canvas:Stipple(stipple: cdStipple) [in Lua]

Defines a wxh matrix of zeros (0) and ones (1). The zeros are mapped to the background color or are transparent, according to the background
opacity attribute. The ones are mapped to the foreground color. The function sets the interior style to CD_STIPPLE. To avoid having to deal
with matrices in C, the element (i,j) of fgbg is stored as fgbg[j*w+i]. The origin is the left bottom corner of the image. It does not need to be
stored by the application, as it is internally replicated by the library. In some drivers is always opaque. The foreground and background colors
must be set before setting the style.

void wdCanvasStipple(cdCanvas* canvas, int w, int h, const unsigned char *fgbg, double w_mm, double h_mm); [in C]

canvas:wStipple(stipple: cdStipple, w_mm, h_mm: number) [in Lua]

Allows specifying the stipple in world coordinates. Another stipple will be created with the size in pixels corresponding to the specified size in
millimeters. The new size in pixels will be an integer factor of the original size that is closets to the size in millimeters. The use of this function
may produce very large or very small stipples.

unsigned char* cdCanvasGetStipple(cdCanvas* canvas, int* w, int* h); [in C]

canvas:GetStipple() - > (stipple: cdStipple) [in Lua]

Returns the current stipple and its dimensions. Returns NULL if no stipple was defined.

void cdCanvasPattern(cdCanvas* canvas, int w, int h, const long int *color); [in C]

canvas:Pattern(pattern: cdPattern) [in Lua]

Defines a new wxh color matrix and sets the interior style to CD_PATTERN. To avoid having to deal with matrices in C, the color element
(i,j) is stored as color[j*w+i]. The origin is the left bottom corner of the image. It does not need to be stored by the application, as it is internally
replicated by the library.

void wdCanvasPattern(cdCanvas* canvas, int w, int h, const long int *color, double w_mm, double h_mm); [in C]

canvas:wPattern(pattern: cdPattern, w_mm, h_mm: number) [in Lua]

Allows specifying the pattern in world coordinates. Another pattern will be created with the size in pixels corresponding to the specified size in
millimeters. The new size in pixels will be an integer factor of the original size that is closets to the size in millimeters. The use of this function
may produce very large or very small patterns.

long int* cdCanvasGetPattern(cdCanvas* canvas, int* w, int* h); [in C]

canvas:GetPattern() - > (pattern: cdPattern) [in Lua]

Returns the current pattern and its dimensions. Returns NULL if no pattern was defined.

Extras in Lua

cd.CreatePattern(width, height: number) -> (pattern: cdPattern)

Creates a pattern in Lua.

cd.KillPattern(pattern: cdPattern)

Destroys the created pattern and liberates allocated memory. If this function is not called in Lua, the garbage collector will call it.

cd.CreateStipple(width, height: number) -> (stipple: cdStipple)

Creates a stipple in Lua.

cd.KillStipple(stipple: cdStipple)

Destroys the created stipple and liberates allocated memory. If this function is not called in Lua, the garbage collector will call it.

Data Access

Page 34 of 65

Data access in Lua is done directly using the operator "[y*width + x]".

All new types can have their values checked or changed directly as if they were Lua tables:

pattern[y*16 + x] = cd.EncodeColor(r, g, b)

...

color = pattern[y*16 + x]

r, g, b = cd.DecodeColor(color)

...

cd.Pattern(pattern)

Notice that the type of value returned or received by pattern[i] is a lightuserdata, the same type used with functions cdEncodeColor,
cdDecodeColor, cdPixel, cdForeground and cdBackground. The value returned or received by stipple[i] is a number.

Text

A raster text using a font with styles. The position the text is drawn depends on the text alignment attribute.

The library has at least 4 standard typefaces: "System" (which depends on the driver and platform), "Courier" (mono spaced with serif),
"Times" (proportional with serif) and "Helvetica" (proportional without serif). Each typeface can have some styles: Plain, Bold, Italic and a
combination of Bold and Italic. As an alternative to the standard typefaces, you can use other typefaces or native driver typefaces with the
function NativeFont, but they may work in a reduced set of drivers.

You may retrieve the dimensions of the selected font with function GetFontDim. Also you may retrieve the bounding box of a specific text
before drawing by using the GetTextSize and GetTextBox functions.

The text is drawn using a reference point; you can change the alignment relative to this point using the TextAligment function.

void cdCanvasText(cdCanvas* canvas, int x, int y, const char* text); [in C]

void cdfCanvasText(cdCanvas* canvas, double x, double y, const char* text); [in C]

void wdCanvasText(cdCanvas* canvas, double x, double y, const char* text); (WC) [in C]

canvas:Text(x, y: number, text: string) [in Lua]

canvas:fText(x, y: number, text: string) [in Lua]

canvas:wText(x, y: number, text: string) (WC) [in Lua]

Draws a text in the position (x,y) according to the current font and text alignment. It expects an ANSI string. Can have line breaks.

Attributes

void cdCanvasFont(cdCanvas* canvas, const char* typeface, int style, int size); [in C]

void wdCanvasFont(cdCanvas* canvas, const char* typeface, int style, double size); (WD) [in C]

canvas:Font(typeface, style, size: number) [in Lua]

canvas:wFont(typeface, style, size: number) (WD) [in Lua]

Selects a text font. The font type can be one of the standard type faces or other driver dependent type face. Since font face names are not a
standard between drivers, a few names are specially handled to improve application portability. If you want to use names that work for all
systems we recommend using: "Courier", "Times" and "Helvetica".

The style can be a combination of: CD_PLAIN, CD_BOLD, CD_ITALIC, CD_UNDERLINE or CD_STRIKEOUT. Only the Windows and
PDF drivers support underline and strikeout. The size is provided in points (1/72 inch) or in pixels (using negative values).

Default values: "System", CD_PLAIN, 12.

You can specify partial parameters using NULL, -1 and 0 for typeface, style and size. When these parameters are specified the current font
parameter is used. For example: CanvasFont(NULL, -1, 10) will only change the font size.

To convert between pixels and points use the function cdPixel2MM to convert from pixels to millimeters and use the formula "(value in points)
= CD_MM2PT * (value in millimeters)".

In WC, the size is specified in millimeters, but is internally converted to points.

Fonts can heavily benefit from the ANTIALIAS attribute where available in the driver.

void cdCanvasGetFont(cdCanvas* canvas, char* typeface, int *style, int *size); [in C]

void wdCanvasGetFont(cdCanvas* canvas, char* typeface, int *style, double *size); (WC) [in C]

canvas:GetFont() -> (typeface: string, style, size: number) [in Lua]

canvas:wGetFont() -> (typeface: string, style, size: number) (WC) [in Lua]

Type Faces

Font Styles

Page 35 of 65

Returns the values of the current font. It is not necessary to provide all return pointers; you can provide only the desired values.

In WC, the size is returned in millimeters.

char* cdCanvasNativeFont(cdCanvas* canvas, const char* nativefont); [in C]

canvas:NativeFont(font: string) -> (old_font: string) [in Lua]

Selects a font based on a string description. The description can depend on the driver and the platform, but a common definition is available for
all drivers. It does not need to be stored by the application, as it is internally replicated by the library. The string is case sensitive. It returns the
previous string.

The string is parsed and the font typeface, style and size are set according to the parsed values, as if cdCanvasFont was called. The native font
string is cleared when a font is set using cdCanvasFont.

The common format definition is similar to the the Pango library Font Description, used by GTK+2. It is defined as having 3 parts: <font
family>, . For ex: "Times, Bold 18", or "Arial,Helvetica, Italic Underline -24". The supported styles include: Bold,
Italic, Underline and Strikeout. Underline, Strikeout, and negative pixel values are not supported by the standard Pango Font Description. The
Pango format include many other definitions not supported by the CD format, they are just ignored.

The IUP "FONT" attribute internal formats are also accepted in all drivers and platforms.

Using "NULL" as a parameter, it only returns the previous string and does not change the font. The value returned is the last attributed value,
which may not correspond exactly to the font selected by the driver.

Using "(char*)CD_QUERY" as a parameter, it returns the current selected font in the common format definition.

int cdCanvasTextAlignment(cdCanvas* canvas, int alignment); [in C]

canvas:TextAlignment(alignment: number) -> (old_alignment: number) [in Lua]

Defines the vertical and horizontal alignment of a text as: CD_NORTH, CD_SOUTH, CD_EAST, CD_WEST, CD_NORTH_EAST, CD_NORTH_WEST,

CD_SOUTH_EAST, CD_SOUTH_WEST, CD_CENTER, CD_BASE_LEFT, CD_BASE_CENTER, or CD_BASE_RIGHT. Returns the previous value. Default

value: CD_BASE_LEFT. Value CD_QUERY simply returns the current value.

Text Alignment

double cdCanvasTextOrientation(cdCanvas* canvas, double angle); [in C]

canvas:TextOrientation(angle: number) -> (old_angle: number) [in Lua]

Defines the text orientation, which is an angle provided in degrees relative to the horizontal line according to which the text is drawn. Returns
the previous value. Value CD_QUERY simply returns the current value. The default value is 0.

Properties

void cdCanvasGetFontDim(cdCanvas* canvas, int *max_width, int *height, int *ascent, int *descent); [in C]

void wdCanvasGetFontDim(cdCanvas* canvas, double *max_width, double *height, double *ascent, double *descent); (WC) [in C]

canvas:GetFontDim() -> (max_width, height, ascent, descent: number) [in Lua]

canvas:wGetFontDim() -> (max_width, height, ascent, descent: number) (WC) [in Lua]

Returns the maximum width of a character, the line's height, the ascent and descent of the characters of the currently selected font. The line's
height is the sum of the ascent and descent of a given additional space (if this is the case). All values are given in pixels and are positive. It is
not necessary to provide all return pointers, you can provide only the desired values and NULL for the others.

Font Dimension Attributes

void cdCanvasGetTextSize(cdCanvas* canvas, const char* text, int *width, int *height); [in C]

void wdCanvasGetTextSize(cdCanvas* canvas, const char* text, double *width, double *height); (WC) [in C]

canvas:GetTextSize(text: string) -> (width, heigth: number) [in Lua]

canvas:wGetTextSize(text: string) -> (width, heigth: number) (WC) [in Lua]

Page 36 of 65

Returns the text size independent from orientation. It is not necessary to provide all return pointers, you can provide only the desired values and
NULL for the others.

void cdCanvasGetTextBounds(cdCanvas* canvas, int x, int y, const char *text, int *rect); [in C]

void wdCanvasGetTextBounds(cdCanvas* canvas, double x, double y, const char* text, double *rect); (WC) [in C]

canvas:GetTextBounds(x, y: number, text: string) -> (rect0, rect1, rect2, rect3, rect4, rect5, rect6, rect7: number) [in Lua]

canvas:wGetTextBounds(x, y: number, text: string) -> (rect0, rect1, rect2, rect3, rect4, rect5, rect6, rect7: number) (WC) [in Lua]

Returns the oriented bounding rectangle occupied by a text at a given position. The rectangle has the same dimentions returned by GetTextSize.
The rectangle corners are returned in counter-clock wise order starting with the bottom left corner, arranged (x0,y0,x1,y1,x2,y2,x3,y3).

void cdCanvasGetTextBox(cdCanvas* canvas, int x, int y, const char* text, int *xmin, int *xmax, int *ymin, int *ymax); [in C]

void wdCanvasGetTextBox(cdCanvas* canvas, double x, double y, const char* text, double *xmin, double *xmax, double *ymin, double *ymax); (WC) [in C]

canvas:GetTextBox(x, y: number, text: string) -> (xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wGetTextBox(x, y: number, text: string) -> (xmin, xmax, ymin, ymax: number) (WC) [in Lua]

Returns the horizontal bounding rectangle occupied by a text at a given position. If orientation is not 0 then its area is always larger than the area
of the rectangle returned by GetTextBounds. It is not necessary to provide all return pointers, you can provide only the desired values and NULL

for the others.

Vector Text

It is a text that uses a font created only with line segments. It is very useful to be scaled and very fast. You must set the text size before drawing
any text. The default direction is horizontal from left to right.

Vector Text Parameters

All vector text drawing in all drivers are simulated using other CD primitives.

void cdCanvasVectorText(cdCanvas* canvas, int x, int y, const char* text); [in C]

void wdCanvasVectorText(cdCanvas* canvas, double x, double y, const char* text); (WC) [in C]

canvas:VectorText(x, y: number, text: string) [in Lua]

canvas:wVectorText(x, y: number, text: string) (WC) [in Lua]

Draws a vector text in position (x,y), respecting the alignment defined by cdTextAlignment. It ignores the configuration cdBackOpacity,

being always transparent. It accepts strings with multiple lines using '\n'. It is ESSENTIAL to call cdVectorTextSize or cdVectorCharSize
before using this function.

The wdCanvasVectorText is the only function that actually depends on World Coordinates. The other Vector Text functions although use the
"wd" prefix they do not depend on World Coordinates. They are kept with these names for backward compatibility. The correct prefix would be
"cdf".

Attributes

void cdCanvasVectorTextDirection(cdCanvas* canvas, int x1, int y1, int x2, int y2); [in C]

void wdCanvasVectorTextDirection(cdCanvas* canvas, double x1, double y1, double x2, double y2); [in C]

canvas:VectorTextDirection(x1, y1, x2, y2: number) [in Lua]

canvas:wVectorTextDirection(x1, y1, x2, y2: number) [in Lua]

Defines the text direction by means of two points, (x1,y1) and (x2,y2). The default direction is horizontal from left to right. It is independent

from the transformation matrix.

double* cdCanvasVectorTextTransform(cdCanvas* canvas, const double* matrix); [in C]

canvas:VectorTextTransform(matrix: table) -> (old_matrix: table) [in Lua]

Defines a transformation matrix with 6 elements. If the matrix is NULL, no transformation is set. The default is no transformation. The origin is
the left bottom corner of matrix. It returns the previous matrix, and the returned vector is only valid until the following call to the function.

The matrix contains scale, rotation and translation elements. It is applied after computing the position and orientation normal to the vector text.
We can describe the elements as follows:

|x'| | scl_x*cos(ang) -sin(ang) trans_x | |x| | 3 4 5|

|y'| = | sin(ang) scl_y*cos(ang) trans_y | * |y| with indices | 0 1 2|

 |1|

It has the same effect of the cdCanvasTransform, but notice that the indices are different.

void cdCanvasVectorTextSize(cdCanvas* canvas, int width, int height, const char * text); [in C]

void wdCanvasVectorTextSize(cdCanvas* canvas, double width, double height, const char* text); [in C]

canvas:VectorTextSize(width, height: number, text: string) [in Lua]

canvas:wVectorTextSize(width, height: number, text: string) [in Lua]

Page 37 of 65

Modifies the font size of the vector text so that it fits the string in the box defined by width and height.

double cdCanvasVectorCharSize(cdCanvas* canvas, int size); [in C]

double wdCanvasVectorCharSize(cdCanvas* canvas, double size); [in C]

canvas:VectorCharSize(size: number) -> (old_size: number) [in Lua]

canvas:wVectorCharSize(size: number) -> (old_size: number) [in Lua]

Modifies the font size by specifying the height of the characters. Returns the previous value. CD_QUERY returns the current value.

void cdCanvasVectorFontSize(cdCanvas* canvas, double size_x, double size_x); [in C]

canvas:VectorFontSize(size_x, size_y: number) [in Lua]

Directly modifies the font size. Set size_x==size_y to maintain the original aspect ratio of the font.

void cdCanvasGetVectorFontSize(cdCanvas* canvas, double *size_x, double *size_x); [in C]

canvas:GetVectorFontSize() -> (size_x, size_y: number) [in Lua]

Returns the font size. It is not necessary to provide all return pointers, you can provide only the desired values and NULL for the others.

char* cdCanvasVectorFont(cdCanvas* canvas, const char *filename); [in C]

canvas:VectorFont(filename: string) -> (fontname: string) [in Lua]

Replaces the current vector font with a font stored in a file with a given name. Returns the name of the font loaded or NULL, if it fails. If
filename is NULL, it activates the default font "Simplex II" (There is no file associated to this font, it is an embedded font). The library will
attempt to load a font from the current directory, if it fails then it will try the directory defined by the environment variable "CDDIR", if it fails, it

will attempt to load it using the filename as a string containing the font as if the file was loaded into that string, if it fails again the font is reset to
the default font and returns NULL. The file format is compatible with the GKS file format (text mode).

Properties

void cdCanvasGetVectorTextSize(cdCanvas* canvas, const char* text, int *width, int *height); [in C]

void wdCanvasGetVectorTextSize(cdCanvas* canvas, const char* text, double *width, double *height); [in C]

canvas:GetVectorTextSize(text: string) -> (width, height: number) [in Lua]

canvas:wGetVectorTextSize(text: string) -> (width, height: number) [in Lua]

Returns the text size independent from orientation. It is not necessary to provide all return pointers, you can provide only the desired values and
NULL for the others.

void cdCanvasGetVectorTextBounds(cdCanvas* canvas, char* text, int x, int y, int *rect); [in C]

void wdCanvasGetVectorTextBounds(cdCanvas* canvas, char* text, double x, double y, double *rect); [in C]

canvas:GetVectorTextBounds(text: string, x, y: number) -> (rect: table) [in Lua]

canvas:wGetVectorTextBounds(text: string, x, y: number) -> (rect: table) [in Lua]

Returns the oriented bounding rectangle occupied by a text at a given position. The rectangle has the same dimentions returned by
GetVectorTextSize. The rectangle corners are returned in counter-clock wise order starting with the bottom left corner, arranged
(x0,y0,x1,y1,x2,y2,x3,y3).

void cdCanvasGetVectorTextBox(cdCanvas* canvas, int x, int y, const char* text, int *xmin, int *xmax, int *ymin, int *ymax); [in C]

void wdCanvasGetVectorTextBox(cdCanvas* canvas, double x, double y, const char* text, double *xmin, double *xmax, double *ymin, double *ymax); [in C]

canvas:GetVectorTextBox(x, y: number, text: string) -> (xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wGetVectorTextBox(x, y: number, text: string) -> (xmin, xmax, ymin, ymax: number) [in Lua]

Returns the horizontal bounding rectangle occupied by a text at a given position. If orientation is not 0 then its area is always larger than the area
of the rectangle returned by GetVectorTextBounds. It is not necessary to provide all return pointers, you can provide only the desired values
and NULL for the others.

Character Codes

The old GKS format contains ASCII codes so a convertion from ANSI to ASCII is done when possible, unmapped characters are left
unchanged, but some rearrage was necessary to acomodate the convertion.

The default vector font was changed from the original Simplex II to contain all ANSI accented characters. So some ASCII characters were
replaced.

Bellow is the character code table of the default font.

Page 38 of 65

Default Font

The original Simplex II font is available in the file "cd/etc/vectorfont00.txt". Bellow is the character code table of the original font (the table
displays the characters after the convertion from ANSI to ASCII):

Page 39 of 65

Original Simplex II

Client Images

There are 2 kinds of client images: RGB and Indexed RGB (or MAP). The RGB image is composed by 3 buffers: red, green and blue (more
colors, more memory). The MAP image is composed by 1 buffer of indices for a table and one table of encoded RGB values (less colors, less
memory).

The image buffer is described by its width and height in pixels. The starting point of the buffer is the origin of the image, which is located at its
bottom left corner. To retrieve a pixel in the image, use the formula pixel(x,y)=buffer[y*width + x].

The Put functions may do zoom in or out; zero order interpolation is used to scale the image. It is not possible to specify a part of the image to
be drawn.

void cdCanvasGetImageRGB(cdCanvas* canvas, unsigned char *r,

 unsigned char *g,

 unsigned char *b,

 int x, int y, int w, int h); [in C]

canvas:GetImageRGB(imagergb: cdImageRGB; x, y: number) [in Lua]

Returns the red, green and blue components of each pixel in a server image. The RGB components are provided in three matrices stored as byte
arrays. The (i,j) component of these matrices is at the address (j*w+i). As occurs with all primitives from the Canvas Draw library, the pixel

(0,0) is at the bottom left corner, and the pixel (w-1,h-1) is that the upper right corner of the image rectangle.

void cdCanvasPutImageRectRGB(cdCanvas* canvas, int iw, int ih,

 const unsigned char *r,

 const unsigned char *g,

 const unsigned char *b,

 int x, int y, int w, int h,

 int xmin, int xmax, int ymin, int ymax); [in C]

Page 40 of 65

void wdCanvasPutImageRectRGB(cdCanvas* canvas, int iw, int ih,

 const unsigned char *r,

 const unsigned char *g,

 const unsigned char *b,

 double x, double y, double w, double h,

 int xmin, int xmax, int ymin, int ymax); (WC) [in C]

canvas:PutImageRectRGB(imagergb: cdImageRGB; x, y, w, h, xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wPutImageRectRGB(imagergb: cdImageRGB; x, y, w, h, xmin, xmax, ymin, ymax: number) (WC) [in Lua]

Puts, in a specified area of the canvas, an image with its red, green and blue components defined in the three matrices stored in byte arrays. The
(i,j) component of these matrices is at the address (j*iw+i). The pixel (0,0) is at the bottom left corner, and the pixel (iw-1,ih-1) is that

the upper right corner of the image rectangle.

Parameters w and h refer to the target rectangle of the canvas, so that it is possible to reduce or expand the image drawn. If w and h are 0, the
size of the image is assumed (iw and ih).

It also allows specifying a rectangle inside the image to be drawn, if xmin, xmax, ymin and ymax are 0 then the whole image is assumed.

If the driver has bpp <=8 or only 256 colors or less, then the image is converted to 256 optimal colors using the function cdRGB2Map and is
drawn using cdPutImageRectMap.

void cdCanvasPutImageRectRGBA(cdCanvas* canvas, int iw, int ih,

 const unsigned char *r,

 const unsigned char *g,

 const unsigned char *b,

 const unsigned char *a,

 int x, int y, int w, int h,

 int xmin, int xmax, int ymin, int ymax); [in C]

void wdCanvasPutImageRectRGBA(cdCanvas* canvas, int iw, int ih,

 const unsigned char *r,

 const unsigned char *g,

 const unsigned char *b,

 const unsigned char *a,

 double x, double y, double w, double h,

 int xmin, int xmax, int ymin, int ymax); (WC) [in C]

canvas:PutImageRectRGBA(imagergba: cdImageRGBA; x, y, w, h, xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wPutImageRectRGBA(imagergba: cdImageRGBA; x, y, w, h, xmin, xmax, ymin, ymax: number) (WC) [in Lua]

The same as function cdPutImageRectRGB, except for the fact that it is possible to specify an alpha channel. The resulting color is the image
color weighted by the alpha value, using the formula result=(source * alpha + destiny * (255 - alpha))/255. This means that, if

alpha is 0, the resulting color is the target color (completely transparent), and, if alpha is 255, the resulting color is the original image color
(completely opaque).

If this function is not defined for a given driver or if alpha is NULL, then the function cdPutImageRectRGB is used, as long as it is defined.

void cdCanvasPutImageRectMap(cdCanvas* canvas, int iw, int ih,

 const unsigned char *index,

 const long int *colors,

 int x, int y, int w, int h,

 int xmin, int xmax, int ymin, int ymax); [in C]

void wdCanvasPutImageRectMap(cdCanvas* canvas, int iw, int ih,

 const unsigned char *index,

 const long int *colors,

 double x, double y, double w, double h,

 int xmin, int xmax, int ymin, int ymax); (WC) [in C]

canvas:PutImageRectMap(imagemap: cdImageMap; palette: cdPalette; x, y, w, h, xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wPutImageRectMap(imagemap: cdImageMap; palette: cdPalette; x, y, w, h, xmin, xmax, ymin, ymax: number) (WC) [in Lua]

The same as function cdPutImageRectRGB, except for the fact that the colors are provided by means of an index matrix (map). The color
corresponding to a given index is given in colors[index]. The map is also a matrix stored as a byte vector. If the color vector is null, then a
vector with 256 gray tones is assumed.

void cdRGB2Map(int iw, int ih,

 const unsigned char *r,

 const unsigned char *g,

 const unsigned char *b,

 unsigned char *index,

 int pal_size, long *color); [in C]

cd.RGB2Map(imagergb: cdImageRGB, imagemap: cdImageMap, palette: cdPalette) [in Lua]

Converts an RGB image into an image with 256 indexed colors. The resulting image must have the same size (width x length) as the RGB
image. It is necessary to allocate memory for the arrays map and colors. This is the same algorithm used in the IM library - in fact, the same
code.

Extras

The following functions are used only for encapsulating the several types of client images from the library in a single structure, simplifying their
treatment.

For such, a public structure was created, called cdBitmap, which will store the image. From this structure, the following fields are officially
defined:

Page 41 of 65

cdBitmap:

 int w /* image width */

 int h /* image heigth */

 int type /* image type: CD_RGBA, CD_RGB or CD_MAP */

cdBitmap* cdCreateBitmap(int w, int h, int type); [in C]

cd.CreateBitmap(w, h, type: number) -> (bitmap: cdBitmap) [in Lua]

Creates an image with width w, and height h and of type type. The type can be CD_RGBA, CD_RGB or CD_MAP. However, CD_MAP only
means that the image will have 256 colors if type is greater than 0. It is assumed that the image will be MAP with the same number of colors in
the palette as type. Internally, the color palette is always allocated with 256 entries, which may or may not be totally fulfilled. In this case, the
value of type can be changed as wished.

cdBitmap* cdInitBitmap(int w, int h, int type, ...); [in C]

[There is no equivalent in Lua]

Similar to cdCreateBitmap, but it accepts the data area already allocated by the user. The parameters vary according to the image type.

CD_RGBA - (unsigned char* red, unsigned char* green, unsigned char* blue, unsigned char* alpha)

CD_RGB - (unsigned char* red, unsigned char* green, unsigned char* blue)

CD_MAP - (unsigned char* index, lont int* colors)

void cdKillBitmap(cdBitmap* image); [in C]

cd.KillBitmap(bitmap: cdBitmap) [in Lua]

Liberates the memory allocated for the image. If this function is not called in Lua, the garbage collector will call it.

unsigned char* cdBitmapGetData(cdBitmap* image, int dataptr); [in C]

cd.BitmapGetData(bitmap: cdBitmap; dataptr: number) -> (data: cdImageChannel) [in Lua]

Returns a pointer to the image's data area according to dataptr. The following values are defined for dataptr:

CD_IRED - red component of an RGB image. cdImageChannel in Lua.
CD_IGREEN - green component of an RGB image. cdImageChannel in Lua.

CD_IBLUE - blue component of an RGB image. cdImageChannel in Lua.

CD_IALPHA - alpha component of an RGBA image. cdImageChannel in Lua.

CD_INDEX - indices of a MAP image. cdImageChannel in Lua.

CD_COLORS - color table of a MAP image. In this case, a type conversion must be made to (long int*). cdPalette in Lua.

In Lua, channels are also available as tables, see Data Access.

void cdBitmapSetRect(cdBitmap* image, int xmin, int xmax, int ymin, int ymax); [in C]

cd.BitmapSetRect(bitmap: cdBitmap; xmin, xmax, ymin, ymax: number) [in Lua]

Allows specifying a region of interest inside the image to be used by the function cdPutBitmap. If no region was defined, the whole image is
used, that is, (0, w-1, 0, h-1).

void cdCanvasPutBitmap(cdCanvas* canvas, cdBitmap* image, int x, int y, int w, int h); [in C]

void wdCanvasPutBitmap(cdCanvas* canvas, cdBitmap* image, double x, double y, double w, double h); (WC) [in C]

canvas:PutBitmap(image: cdBitmap; x, y, w, h: number) [in Lua]

canvas:wPutBitmap(bitmap: cdBitmap; x, y, w, h: number) (WC) [in Lua]

Draws the image in the position (x,y), changing the scale. It encapsulates cdPutImageRectRGB, cdPutImageRectRGBA and
cdPutImageRectMap. The region of the image drawn depends on the rectangle defined by cdBitmapSetRect. If no rectangle was defined, then
the whole image is used.

The parameters w and h allow scaling the image, increasing or decreasing its dimensions when drawn. If w and/or h are 0, then no scale change
is assumed.

void cdCanvasGetBitmap(cdCanvas* canvas, cdBitmap* image, int x, int y); [in C]

canvas:GetBitmap(bitmap: cdBitmap; x, y: number) [in Lua]

Encapsulates cdGetImageRGB. Nothing happens if the image is MAP.

void cdBitmapRGB2Map(cdBitmap* image_rgb, cdBitmap* image_map); [in C]

cd.BitmapRGB2Map(bitmap_rgb: cdBitmap, bitmap_map: cdBitmap) [in Lua]

Encapsulates cdRGB2Map. The images must be of types RGB(A) and MAP, respectively.

Extras in Lua (Deprecated)

cd.CreateImageRGB(width, height: number) -> (imagergb: cdImageRGB)

Creates an RGB image in Lua. Deprecated use cd.CreateBitmap.

cd.KillImageRGB(imagergb: cdImageRGB)

Destroys the created RGB image and liberates allocated memory. If this function is not called in Lua, the garbage collector will call it.

Page 42 of 65

Deprecated use cd.KillBitmap.

cd.CreateImageRGBA(width, height: number) -> (imagergba: cdImageRGBA)

Creates an RGBA image in Lua. Deprecated use cd.CreateBitmap.

cd.KillImageRGBA(imagergba: cdImageRGBA)

Destroys the created RGBA image and liberates allocated memory. If this function is not called in Lua, the garbage collector will call it.
Deprecated use cd.KillBitmap.

cd.CreateImageMap(width, height: number) -> (imagemap: cdImageMap)

Creates a Map image in Lua. Deprecated use cd.CreateBitmap.

cd.KillImageMap(imagemap: cdImageMap)

Destroys the created Map image and liberates allocated memory. If this function is not called in Lua, the garbage collector will call it.
Deprecated use cd.KillBitmap.

Data Access

Data access in Lua is done directly using the operator "[y*width + x]" in image channels. Each channel works as a value table which should be
consulted or modified in the following way:

image = cd.CreateBitmap(100, 200)

...

image.r[y*100 + x] = 255

image.g[y*100 + x] = 128

image.b[y*100 + x] = 0

...

green = image.g[y*100 + x] -- it will return 128

The order of the tables is important, so that image[n].r has no meaning to CDLua and the expression will cause an error. Finally, the user could
expect the value of image[n] to be of type lightuserdata. Unfortunately, this is not the case, and such expression will cause the same error.

In the old cdImageMap images, the channel must be not specified: imagemap[y*100+x].

Known channel names are:

r - red channel of RGB or RGBA images.

g - gree channel of RGB or RGBA images.

b - blue channel of RGB or RGBA images.

a - alpha channel of RGBA images.

m - indices channel of MAP images (valid only for cdBitmap objects).

p - colors table of MAP images (valid only for cdBitmap objects). It is a cdPalette object.

Server Images

It is a high performance image compatible with a specific canvas. It is faster than user image functions, but less flexible. It is commonly used for
off-screen drawing in Window Systems.

You can make gets and puts on several canvases but they must be created using the same driver. It is possible to specify a part of the image to be
drawn, but it is not possible to zoom.

It is called "server" images because the data is stored in a system private format, that the application (or the client) does not have access.

To create a server image there must be an active canvas of a driver with server image support.

cdImage* cdCanvasCreateImage(cdCanvas* canvas, int w, int h); [in C]

canvas:CreateImage(w, h: number) -> (image: cdImage) [in Lua]

Creates a compatible image with size = w x h pixels. A compatible image has the same color representation (number of bits per pixel) of the

active canvas. Once the server image is created it is independent of the active canvas. The server image can only be used with an other canvas of
the same type as the canvas that was active when the image was created. The default background is the same as the canvas, CD_WHITE.

void cdKillImage(cdImage* image); [in C]

image:KillImage() [in Lua]

Liberates memory allocated for the image. If this function is not called in Lua, the garbage collector will call it.

void cdCanvasGetImage(cdCanvas* canvas, cdImage* image, int x, int y); [in C]

canvas:GetImage(image: cdImage; x, y: number) [in Lua]

Copies a rectangular region from the current rectangular context to the memory (image). (x,y) is the coordinate of the bottom left corner of the

rectangular region. The width and length of the rectangular region are defined in the image structure (when the image is created).

void cdCanvasPutImageRect(cdCanvas* canvas, cdImage* image, int x, int y, int xmin, int xmax, int ymin, int ymax); [in C]

void wdCanvasPutImageRect(cdCanvas* canvas, cdImage* image, double x, double y, int xmin, int xmax, int ymin, int ymax); (WC) [in C]

Page 43 of 65

canvas:PutImageRect(image: cdImage; x, y, xmin, xmax, ymin, ymax: number) [in Lua]

canvas:wPutImageRect(image: cdImage; x, y, xmin, xmax, ymin, ymax: number) (WC) [in Lua]

Copies an image in a rectangular region of the canvas with the bottom left corner in (x,y). Allows specifying a rectangle inside the image to be

drawn, if xmin, xmax, ymin and ymax are 0, then the whole image is assumed.

void cdCanvasScrollArea(cdCanvas* canvas, int xmin, int xmax, int ymin, int ymax, int dx, int dy); [in C]

canvas:ScrollArea(xmin, xmax, ymin, ymax, dx, dy: number) [in Lua]

Copies the rectangle defined by the coordinates (xmin,ymin) and (xmax,ymax) to the rectangle defined by (xmin+dx,ymin+dy) and

(xmax+dx,ymax+dy). It has the same effect as cdGetImage followed by cdPutImage, but it should be faster and does not require the explicit

creation of an image to be executed. Note that the region belonging to the first rectangle, but not to the second, remains unchanged (the function
does not clean this region).

System

char* cdVersion(void); [in C]

cd.Version() -> (version: string) [in Lua]

Returns the current version number of the library. The string with the version number has a format "major.minor.build". For instance, the string
"2.1.3" has number 2 as the main (major) version number, 1 as the secondary (minor) version number, and 3 as the build number. The major
version number represents a change in the structure or behavior of functions; the minor version number represents one or more new drivers and
functions added to the library; and the build version number represents one or more corrected bugs.

char* cdVersionDate(void); [in C]

cd.VersionDate() -> (versiondate: string) [in Lua]

Returns the release date of the current version of the library.

int cdVersionNumber(void); [in C]

cd.VersionNumber() -> (version: number) [in Lua]

Returns the current version number of the library.

[in C]

CD_NAME "CD - Canvas Draw"

CD_DESCRIPTION "A 2D Graphics Library"

CD_COPYRIGHT "Copyright (C) 1994-2007 Tecgraf/PUC-Rio and PETROBRAS S/A"

CD_VERSION "5.0"

CD_VERSION_DATE "2007/04/09"

CD_VERSION_NUMBER 500000

[in Lua]

cd._NAME

cd._DESCRIPTION

cd._COPYRIGHT

cd._VERSION

cd._VERSION_DATE

cd._VERSION_NUMBER

Usefull definitions. They have the same value returned by cdVersion* functions, except that they do not include the build number.

Metafile Interpretation

int cdCanvasPlay(cdCanvas* canvas, cdContext* ctx, int xmin, int xmax, int ymin, int ymax, void *data); [in C]

canvas:Play(ctx, xmin, xmax, ymin, ymax: number, data: string) -> (status: number) [in Lua]

Interprets the graphical contents (primitives and attributes) in a given driver and calls equivalent functions of the CD library using the given
canvas. The primitives are drawn inside the region defined by the given limits. If limits are 0 (xmin, xmax, ymin and ymax) the primitives will
be drawn with their coordinates having the original values in the file.

Only some drivers implement this function:

� CD_CLIPBOARD = Clipboard, data is ignored.
� CD_WMF = Windows Metafile, data is a char* for the string ''filename''. Works only in the MS Windows system.
� CD_EMF = Windows Enhanced Metafile, data is a char* for the string ''filename''. Works only in the MS Windows system.
� CD_CGM = Computer Graphics Metafile ISO, data is a char* for the string ''filename''.
� CD_METAFILE = CD Metafile, data is a char* for the string ''filename''.
� CD_PICTURE = CD Picture, data is a cdCanvas* of the Picture canvas.

int cdContextRegisterCallback(cdContext *ctx, int cb, int(*func)(cdCanvas* canvas, ...)); [in C]

cd.ContextRegisterCallback(ctx, cb: number, func: function) -> (status: number) [in Lua]

Used to customize the behavior of the Play function. If you register a known callback function, it will be called during the processing loop of
cdPlay.

Page 44 of 65

The callback should return CD_CONTINUE, if it returns CD_ABORT, the cdPlay function is aborted. The callback identifiers of a given driver
must be in the header file relative to that driver, with prefix "CD_XXYYYCB", where XX identifies that driver and YYY identifies the callback
name.

There is a default callback common to all implementations of cdPlay, CD_SIZECB. Its definition is:

int cdResizeCB(cdCanvas* canvas, int width, int height, double mm_width, double mm_height)

It returns the size of the image in the file before any function in the CD library is called, so that you can call the cdPlay function without an
active canvas and create the canvas inside the callback. It works as a cdCanvasGetSize function.

Color Coding

The library's color system is RGB. In order to simplify some functions, a compact representation was created for the 3 values. To make a
conversion from this representation to the 3 separate values and vice-versa, use functions cdDecodeColor and cdEncodeColor.

When the canvas used does not support more than 8 bpp of color resolution, you can use function Palette to give the driver an idea of which
colors to prioritize. Palette's behavior is driver dependent.

There are some predefined colors:

CD_RED = (255, 0, 0)

CD_DARK_RED = (128, 0, 0)

CD_GREEN = (0 ,255, 0)

CD_DARK_GREEN = (0,128, 0)

CD_BLUE = (0, 0,255)

CD_DARK_BLUE = (0, 0,128)

CD_YELLOW = (255,255, 0)

CD_DARK_YELLOW = (128,128, 0)

CD_MAGENTA = (255, 0,255)

CD_DARK_MAGENTA = (128, 0,128)

CD_CYAN = (0,255,255)

CD_DARK_CYAN = (0,128,128)

CD_WHITE = (255,255,255)

CD_BLACK = (0, 0 , 0)

CD_DARK_GRAY = (128,128,128)

CD_GRAY = (192,192,192)

long int cdEncodeColor(unsigned char red, unsigned char green, unsigned char blue) [in C]

cd.EncodeColor(r, g, b: number) -> (old_color: lightuserdata) [in Lua]

Returns a codified triple (r,g,b) in a long integer such as 0x00RRGGBB, where RR are the red components, GG are the green ones and BB are the

blue ones. The code is used in the CD library to define colors. It can be used without an active canvas.

void cdDecodeColor(long int color, unsigned char *red, unsigned char *green, unsigned char *blue) [in C]

cd.DecodeColor(color: lightuserdata) -> (r, g, b: number) [in Lua]

Returns the red, green and blue components of a color in the CD library. Can be used without an active canvas.

long int cdEncodeAlpha(long int color, unsigned char alpha) [in C]

cd.EncodeAlpha(color: lightuserdata, alpha: number) -> (color: lightuserdata) [in Lua]

Returns the given color coded with the alpha information. ATENTION: At the moment only the Win32 with GDI+ and the IMAGERGB drivers
support alpha components in color coding. Se in Windows Using GDI+ Base Driver and IMAGERGB driver. The internal representation of the
component is inverted, because the default value must be 0 and opaque for backward compatibility, so you should use the cdDecodeAlpha
function ot the cdAlpha macro to retrieve the alpha component.

unsigned char cdDecodeAlpha(long int color) [in C]

cd.DecodeAlpha(color: lightuserdata) -> (a: number) [in Lua]

Returns the alpha component of a color in the CD library. Can be used without an active canvas. 0 is transparent, 255 is opaque.

unsigned char cdAlpha(long int color); [in C]

cd.Alpha(color: lightuserdata) -> (r: number) [in Lua]

Macro that returns the alpha component of a color in the CD library. Can be used without an active canvas.

unsigned char cdRed(long int color); [in C]

cd.Red(color: lightuserdata) -> (r: number) [in Lua]

Macro that returns the red component of a color in the CD library. Can be used without an active canvas.

unsigned char cdGreen(long int color); [in C]

cd.Green(color: lightuserdata) -> (g: number) [in Lua]

Macro that returns the green component of a color in the CD library. Can be used without an active canvas.

Page 45 of 65

unsigned char cdBlue(long int color); [in C]

cd.Blue(color: lightuserdata) -> (b: number) [in Lua]

Macro that returns the blue component of a color in the CD library. Can be used without an active canvas.

int cdCanvasGetColorPlanes(cdCanvas* canvas); [in C]

canvas:GetColorPlanes() -> (bpp: number) [in Lua]

Returns a given number, for instance p, which defines the number of colors supported by the current device as 2
p
, representing the number of

bits by pixel.

void cdCanvasPalette(cdCanvas* canvas, int n, const long int *color, int mode); [in C]

canvas:Palette(palette: cdPalette; mode: number) [in Lua]

In systems limited to 256 palette colors, this function aims at adding n colors to the system's palette. In such systems, the colors demanded

forward or backward which are not in the palette are approximated to the closest available color. The type can be CD_FORCE or CD_POLITE.

CD_FORCE ignores the system colors and interface elements, since the menus and dialogues may be in illegible colors, but there will be more

colors available. CD_POLITE is the recommended type. It must always be used before drawing. It cannot be queried.

Palette

cd.CreatePalette(size: number) -> (palette: cdPalette) [in Lua Only]

Creates a palette.

cd.KillPalette(palette: cdPalette) [in Lua Only]

Destroys the created palette and liberates allocated memory. If this function is not called in Lua, the garbage collector will call it.

Palette Data Access

Data access in Lua is done directly using the array access operators. The colors can have their values checked or changed directly as if they were
Lua tables:

palette[index] = cd.EncodeColor(r, g, b)

count = #palette

...

color = palette[index]

r, g, b = cd.DecodeColor(color)

Notice that the type of value returned or received by palette[index] is a lightuserdata, the same type used with functions cdEncodeColor,
cdDecodeColor, cdPixel, cdForeground and cdBackground.

Drivers

Driver is the implementation of functions of a canvas for a specific canvas type. In other words it represents the context in which the canvas is
situated. For example, a Window System that has windows on which you can draw.

It can be portable, platform independent, or it can has a different implementation in each platform. In this case its functions may have different
behaviors, but the library is implemented in such a way that these differences are minimized.

CD_IUP - IUP Driver (cdiup.h)

This driver provides access to an interface element of a IUP canvas. IUP is a portable user-interface library used to create portable user-interface
applications. See IUP documentation.

Use

The canvas is created by means of a call to the function cdCreateCanvas(CD_IUP, Data), after which other CD functions can be called

as usual. This function creates a CD canvas based on the existing IUP canvas. The parameter Data is a pointer to a handle of the IUP canvas

(Ihandle*). For use with CDLUA, a canvas created with IUPLUA must necessarily be passed as parameter.

Any amount of such canvases may exist simultaneously, but they should not use the same IUP canvas. It is important to note that a call to
function cdKillCanvas is required to close the file properly.

The CD canvas is automatically stored in the IUP canvas as the "_CD_CANVAS" attribute.

To use this driver, it must be linked with the "iupcd" library available in the IUP distribution.

In Lua, it is necessary to call function cdluaiup_open() after a call to function cdlua_open(), apart from linking with the

"iupluacd" library. To use with require must be require"iupluacd" or require"iupluacd51".

To use this driver in Windows using GDI+ is necessary to call cdUseContextPlus(1) before creating the canvas.

Behavior of Functions

Page 46 of 65

This driver is greatly platform-dependent, but little dependent on the IUP library. For further detail, see the Behavior of Functions in each
platform: Microsoft Windows (GDI), Windows Using GDI+, X-Windows (XLIB). However, it should be noted that some functions behave
differently from the basic functions of each platform.

Control

� cdCanvasActivate: updates the canvas size; the IUP canvas might have been resized.

Exclusive Attributes

� "WINDOWRGN": set the shape of a window to the current complex clipping region (set only). If data is NULL the region is reset.

CD_NATIVEWINDOW - Native Window Driver (cdnative.h)

This driver provides access to an existing Native Window, a basic element of the user-interface system. It also provides access to other native
handles like HDC handles in Windows.

Use

The canvas is created by means of a call to the function cdCreateCanvas(CD_NATIVEWINDOW, Data), after which other functions in

the CD library can be called as usual. This function creates a CD canvas based on an existing system canvas. The parameter Data is a pointer

to a handle of the canvas. It is system-dependent, having a different meaning in each platform:

Microsoft Windows: can be the handle of the Windows window (HWND), or the handle of a previously created Device Context (HDC), or can be

a string in the format "hdc width height" or, in C, "%p %d %d". To get the entire screen use a NULL data.

X-Windows: It is a string in the format "display window" or, in C, "%p %lu" (uses the default screen).

The given parameters must exists until cdKillCanvas is called. The HDC is released only if created inside cdCreateCanvas from an

HWND or when data is NULL.

Any amount of such canvases may exist simultaneously, but they should not use the same window, except if you are using a GDI canvas and a
GDI+ canvas at the same time for the same window.

In CDLUA, the creation parameter must be a string in X-Windows and a userdata in Microsoft Windows.

To use this driver in Windows using GDI+ is necessary to call cdUseContextPlus(1) before creating the canvas.

Exclusive Functions

void cdGetScreenSize(int *width, int *height, double *width_mm, double *height_mm); [in C]

cd.GetScreenSize() -> (width, heigth, mm_width, mm_height: number) [in Lua]

Equivalent to function cdCanvasGetSize, but returns the values relative to the main screen of the window system. It is not necessary to

have an active canvas to call this function.

int cdGetScreenColorPlanes(void); [in C]

cd.GetScreenColorPlanes() -> (bpp: number) [in Lua]

Equivalent to function cdCanvasGetColorPlanes, but returns the value relative to the main screen of the window system. It is not

necessary to have an active canvas to call this function.

Behavior of Functions

This driver is greatly platform-dependent. For further detail, see the Behavior of Functions in each platform: Microsoft Windows (GDI),
Windows Using GDI+, X-Windows (XLIB). However, it should be noted that some functions behave differently from the basic functions of
each platform.

Control

� cdCanvasActivate: updates the canvas size; the window might have been resized. If the canvas was created using a HDC, the size

will not be updated.

IMPORTANT: For the standard Win32 base driver (not GDI+) if your Windows does not have one of the styles CS_OWNDC or
CS_CLASSDC, then a temporary HDC will be created everytime a cdCanvasActivate is called. To release this HDC call
cdCanvasDeactivate after drawing. The IupCanvas control of the IUP library in the Win32 driver have the style, so this should be
ignored. But the IupCanvas in the GTK driver running in Win32 does not have this style so cdCanvasDeactivate should be used.

Exclusive Attributes

� "WINDOWRGN": set the shape of a window to the current complex clipping region (set only). If data is NULL the region is reset.

CD_CLIPBOARD - Clipboard Driver (cdclipbd.h)

This driver allows the access to a Clipboard area. It is greatly dependent on the system. In Win32, it creates an Enhanced Metafile, a Bitmap or
a CD Metafile; in X-Windows it creates only a CD Metafile.

Use

Page 47 of 65

The canvas is created by means of a call to function cdCreateCanvas(CD_CLIPBOARD, Data), after which other functions in the CD

library can be called as usual. The Data parameter string is platform-dependent and varies according to the metafile created. See each metafile's

documentation, but remember to exclude parameter "filename".

In the Windows environment, if the string "-b" is present, it means that a Bitmap must be created instead of a metafile, and, if the string "-m"

is specified, a CD Metafile will be created. For a Bitmap the remaining string must contains the bitmap size and optionally its resolution: "-b
widthxheight [resolution]" or in C "%dx%d %g", the resolution default is the screen resolution.

In the X-Windows environment, the Display ("%p") where the data will be stored must be passed as a parameter before the CD Metafile

parameters. This environment's driver is used only for applications that use CD to communicate with each other, because only CD Metafiles are
created.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to properly

copy the data to the Clipboard.

You can interpret the data from the Clipboard using function cdPlay. In the X-Windows environment, the parameter "data" for the cdPlay

function is the pointer to the Display where the metafile will be obtained. The cdRegisterCallback must be called for the driver that will
interpret the file, except for bitmaps that the CD_CLIPBOARD driver must be used.

To use this driver in Windows using GDI+ is necessary to call cdUseContextPlus(1) before creating the canvas.

Behavior of Functions

This driver is greatly platform-dependent. For further detail, see the Behavior of Functions in each platform: Microsoft Windows (GDI), X-
Windows (XLIB). However, it should be noted that some functions behave differently from the basic functions of each platform.

CD_PRINTER - Printer Driver (cdprint.h)

This driver provides access to a System Default Printer.

Currently, it works only in Microsoft Windows platforms, but it is possible to use it in other platforms without the risk of compilation error. If
you attempt to create a canvas in another platform, the function cdCreateCanvas will return NULL.

Use

The canvas is created by calling function cdCreateCanvas(CD_PRINTER, Data), after which other CD functions can be called as usual.

The Data string has the following format:

"name [-d]" or in C style "%s -d"

name is an optional document name that will appear in the printer queue. Optionally, -d displays the System Printer dialogue box before

starting to print, allowing you to configure the printer's parameters. When using this parameter and the return canvas is NULL, one must assume
that the print was canceled by the user.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to properly

send the data to the printer.

Pages - Use Flush to change to a new page. You can draw first on page 1, then on page 2 and so forth.

To use this driver in Windows using GDI+ is necessary to call cdUseContextPlus(1) before creating the canvas.

Behavior of Functions

This driver is greatly platform-dependent. For further detail, see the Behavior of Functions in each platform: Microsoft Windows (GDI),
Windows Using GDI+, X-Windows (XLIB). However, it should be noted that some functions behave differently from the basic functions of
each platform.

A printer created in Win32s has the same limitations as the WMF driver. In Windows 95 or NT, it has the same limitations as the EMF driver.

Control

� Flush: changes to a new page, preserving the previous one. In the Win32 base driver, after the first page, function cdText draws the

text below its correct position - we do not know why this happens.

Attributes

� Hatch: opaque in Win32 base driver (GDI).

CD_PICTURE - CD Picture (cdpicture.h)

This driver allows the creation of a CD Picture. It store primitives and attributes in memory that can be played and resized in any other driver. It
does not includes clipping and WriteMode.

Use

The file is created by calling function cdCreateCanvas(CD_PICTURE, Data). The Data parameter is a string that can contain the

resolution in the following format:

"[resolution]" or in C use "%lg"

Page 48 of 65

Resolution is the number of pixels per millimeter; its default value is "3.78 pixels/mm" (96 DPI).

The canvas size is automatically calculated to be the bounding box of all the primitives inside the picture.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to release the

picture memory.

Behavior of Functions

Coordinate System and Clipping

� Play: implemented.

� UpdateYAxis: does nothing.

� Clipping: not supported.
� Transformation Matrix: not supported.
� cdGetCanvasSize: returns the size of the bounding box that includes all primitives inside the picture.

Attributes

� WriteMode: does nothing.

� FontDim: uses a size estimator, returning approximate values.

� TextSize: uses a size estimator, returning approximate values.

Colors

� GetColorPlanes: always returns 24.

Primitives

� Floating point primitives are supported.

Client Images

� GetImageRGB: does nothing.

Server Images

� All functions do nothing.

CD_IMAGERGB - RGB Client Image Driver (cdirgb.h)

This driver allows access to a Client Image, an imaged based in RGB colors with 24 or 32 bits per pixel (8 per channel). It is used to implement
high-quality offscreen drawings, but is slower than the Server Image version. In fact, it is a rasterizer, that is, it converts vector primitives into a
raster representation. All primitives are implemented by the library and are not system-dependent (the primitives of the Server Image version are
system-dependent).

Use

The canvas is created by means of a call to the function cdCreateCanvas(CD_IMAGERGB, Data), after which other functions in the CD

library can be called as usual. The function creates an RGB image, and then a CD canvas. The Data parameter string has the following format:

"widthxheight [r g b] -r[resolution]" in C "%dx%d %p %p %p -r%g"

or

"widthxheight [r g b a] -r[resolution] -a" in C "%dx%d %p %p %p %p -r%g -a"

It must include the canvas' dimensions. Width and height are provided in pixels (note the lowercase "x" between them). As an option, you

can specify the buffers to be used by the driver, so that you can draw over an existing image. The resolution can be defined with parameter -r;

its default value is "3.78 pixels/mm" (96 DPI).

When the parameter -a is specified an alpha channel will be added to the canvas underlying image. All primitives will be composed using an
over operator if the foreground or background colors have alpha components. This channel is initialized with transparent (0). The other channels
are initialized with white (255, 255, 255). After drawing in the RGBA image the resulting alpha channel can be used to compose the image in
another canvas.

All channels are initialized only when allocated internally by the driver. They are not initialized when allocated by the application.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to release
internal allocated memory.

In Lua, the canvas can be created in two ways: with an already defined image or without it. With an image, an RGB image must be passed as
parameter, created by functions cd.CreateImageRGB, cd.CreateImageRGBA or cd.CreateBitmap in Lua. The resolution must be passed in
an extra parameter after the image.

Exclusive Functions

cd.ImageRGB(canvas: cdCanvas) -> (imagergb: cdImageRGB or cdImageRGBA) [in Lua]

cd.ImageRGBBitmap(canvas: cdCanvas) -> (bitmap: cdBitmap) [in Lua]

Returns the canvas' internal image.

Page 49 of 65

Behavior of Functions

All primitives are from the Simulation driver, see the Simulation driver's documentation for further information.

Control

� Flush: does nothing.

� Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

� UpdateYAxis: does nothing. The axis orientation is the same as the CD library's.

Colors

� GetColorPlanes: returns 24 if no alpha, returns 32 if exists an alpha channel.

� Palette: does nothing.

� Foreground & Background: accepts the transparency information encoded in the color.

Exclusive Attributes

� "REDIMAGE", "GREENIMAGE", "BLUEIMAGE", "ALPHAIMAGE": return the respective pointers of the canvas image (read-only). Not

accessible in Lua.

� "ANTIALIAS": controls the use of anti-aliasing for line primitives. Assumes values "1" (active) and "0" (inactive). Default value: "1".

Notice that text is always antialiased.

� "ROTATE": allows the usage of 1 angle and 1 coordinate (x, y), that define a global rotation transformation centered in the specified

coordinate. Use 1 real and 2 integer values inside a string ("%g %d %d" = angle x y). In this driver will change the current transformation
matrix, if removed will reset the current transformation matrix.

CD_IMAGE - Server Image Driver (cdimage.h)

This driver provides access to a Server Image, a memory-based high-performance image that corresponds to the attributes of the system's
devices. It is used for offscreen drawings.

Use

The canvas is created by means of a call to function cdCreateCanvas(CD_IMAGE, Data), after which other functions in the CD library

can be called as usual. The function creates a CD canvas based on an existing Server Image. The Data parameter must be a pointer to an image

created with function cdCreateImage.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to properly

end the driver. You can call function cdKillImage only after calling cdKillCanvas.

For use with CDLUA, the Server Image passed as parameter must have been created with function cd.CreateImage in Lua.

To use this driver in Windows using GDI+ is necessary to call cdUseContextPlus(1) before creating the canvas.

Behavior of Functions

This driver is greatly platform-dependent. For further detail, see the Behavior of Functions in each platform: Microsoft Windows (GDI),
Windows Using GDI+, X-Windows (XLIB). However, it should be noted that some functions behave differently from the basic functions of
each platform.

CD_DBUFFERRGB - Double Buffer Driver using a RGB image (cdirgb.h)

Implements the concept of offscreen drawing. It is based on a Image RGB (the back buffer) and any other canvas (the front buffer).

Use

The canvas is created by means of a call to function cdCreateCanvas(CD_DBUFFERRGB, Data), after which other functions in the CD

library can be called as usual. This function creates a CD canvas to use with any existing canvas. The parameter Data is a pointer to the already

created canvas.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to properly

end the driver. Call function cdKillCanvas for this driver before calling cdKillCanvas for the client canvas driver.

The drawing functions will work normally as if they were drawn on the image RGB driver. When function cdCanvasFlush is executed, the

image is drawn in the canvas passed as parameter in the canvas creation.

When the window's size changes, the RGB image is automatically recreated using the same size as the canvas. This is done in the function
cdCanvasActivate.

Behavior of Functions

This driver depends on the RGB Client Image Driver.

Page 50 of 65

Control

� Flush: draws the contents of the image into the window. It is affected by Origin and Clipping, but not by WriteMode.

CD_DBUFFER - Double Buffer Driver using a server image (cddbuf.h)

Implements the concept of offscreen drawing. It is based on a Server Image (the back buffer) and a Window canvas (the front buffer).

Use

The canvas is created by means of a call to function cdCreateCanvas(CD_DBUFFER, Data), after which other functions in the CD

library can be called as usual. This function creates a CD canvas to use with an existing window canvas (Native Windows or IUP). The
parameter Data is a pointer to the already created canvas.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to properly

end the driver. Call function cdKillCanvas for this driver before calling cdKillCanvas for the window driver.

The drawing functions will work normally as if they were drawn on the server image driver. When function cdCanvasFlush is executed, the

image is drawn in the window canvas passed as parameter in the canvas creation.

When the window's size changes, the server image is automatically recreated using the same size as the canvas. This is done in the function
cdCanvasActivate.

We suggest you to implement rubber bands using XOR directly on the front buffer.

To use this driver in Windows using GDI+ is necessary to call cdUseContextPlus(1) before creating the canvas.

Behavior of Functions

This driver is greatly platform-dependent. For further detail, see the Behavior of Functions in each platform: Microsoft Windows (GDI),
Windows Using GDI+, X-Windows (XLIB). However, it should be noted that some functions behave differently from the basic functions of
each platform.

Control

� Flush: draws the contents of the image into the window. It is affected by Origin and Clipping, but not by WriteMode.

CD_PDF - PDF Driver (cdpdf.h)

This drivers allows generating a PDF file. This format developed for representing documents in a manner that is independent of the original
application software, hardware, and operating system used to create those documents. The format's copyrights are property of Adobe Systems.

This driver is very similar to the PS driver but it uses the PDFlib library to generate the PDF (http://www.pdflib.com/). There are two PDFlib
licenses available, one commercial and one free with a flexible license, see PDFlib Lite License. The CD_PDF driver works with both versions.

By default the pre-compiled library in the distribution uses the PDF Lite version code. The configuration of the PDF Lite code included does not
supports image file formats. The current PDF Lite version is 7.0.2.

PDFlib Copyright (c) 1997-2007 Thomas Merz and PDFlib GmbH. All rights reserved. Applications that use this driver are subject to the
PDFlib GmbH License Agreement.

Use

The file is created and opened by calling function cdCreateCanvas(CD_PDF, Data), in which Data contains the filename and canvas

dimensions. This function opens the file and writes its header. Then, other functions in the CD library can be called as usual. The Data

parameter string has the following format:

"filename -p[paper] -w[width] -h[height] -s[resolution] [-o]"

or in C

"%s -p%d -w%g -h%g -s%d -o"

The filename must be inside double quotes (") if it has spaces. Any amount of such canvases may exist simultaneously. It is important to note
that a call to function cdKillCanvas is required to close the file properly.

To use this driver, the application must be linked with the "cdpdf" and "pdflib" libraries.

Paper Size - The default paper size is A4. It is possible to change it by using one of the predefined sizes - CD_A0, CD_A1, CD_A2, CD_A3, CD_A4,

CD_A5, CD_LETTER and CD_LEGAL - with parameter "-p". It is also possible to define a paper in a particular size by using parameters "-w" e "-

h". Values are provided in millimeters.

Default Paper Sizes

 Width (mm) Length (mm)

A0 841 1187

Page 51 of 65

Resolution - Resolution is used to convert values from millimeters to pixels (the same as points, but the number of points is per inch - DPI). Use
parameter "-s" to configure the resolution. The default value is 300 DPI.

Orientation - The page can be oriented as portrait or landscape. The default value is portrait, but when the parameter "-o" is used, the horizontal
and vertical values are switched.

In Lua, it is necessary to call function cdluapdf_open() after a call to function cdlua_open(), apart from linkediting with the

"cdluapdf" library.

Behavior of Functions

Control

� Play: does nothing, returns CD_ERROR.

� Flush: changes to a new page, preserving the previous one.

� Clear: does nothing.

Coordinate System & Clipping

� UpdateYAxis: does nothing.

� Complex Regions: not supported.

Attributes

� Background does nothing, returns CD_WHITE.

� BackOpacity: does nothing, returns CD_TRANSPARENT.

� WriteMode: does nothing, returns CD_REPLACE.

� Hatch: is always opaque.

� Stipple: is always opaque.

� Font: the old "System" font is mapped to the "Courier" font. For the PDF core fonts styles are added to the font name, for other fonts

styles are simulated by PDFlib. Underline and Strikeout are supported. Following is the core fonts:

Courier, Courier-Bold, Courier-Oblique, Courier-BoldOblique,

Helvetica, Helvetica-Bold, Helvetica-Oblique, Helvetica-BoldOblique,

Times-Roman, Times-Bold, Times-Italic, Times-BoldItalic,

Symbol,

ZapfDingbats

Colors

� GetColorPlanes: returns 24.

� Palette: does nothing.

Client Images

� GetImageRGB: does nothing.

� PutImageMap: stores an RGB image.

Primitives

� Pixel: does not exist in PDF, is simulated using a circle with radius=1.

� Floating point primitives are supported.
� Filled primitves do not include the line at the edges of the filled area.

Server Images

� All functions do nothing.

Exclusive Attributes

� "POLYHOLE": defines the index of the vertex where there is a hole in a closed polygon. It will affect the next cdEnd. Can be called

several times between cdBegin and cdEnd to define holes. The value passed must be a string containing an integer ("%d"). If the value of
the attribute passed is NULL, all holes will no longer be considered. When consulted returns the current number of holes ("%d"). It can
have a maximum of 500 holes. Default: NULL.

� "HATCHBOXSIZE": defines the size of smallest hatch box pattern. This affects the spacing between the hatch lines. The value passed

must be a string containing an integer ("%d"). If the value of the attribute passed is NULL, the value is rest to the default. When consulted
returns the current value ("%d"). Default: "8".

A1 594 841

A2 420 594

A3 297 420

A4 210 297

A5 148 210

Letter 216 279

Legal 216 356

Page 52 of 65

� "ROTATE": allows the usage of 1 angle and 1 coordinate (x, y), that define a global rotation transformation centered in the specified

coordinate. Use 1 real and 2 integer values inside a string ("%g %d %d" = angle x y).

� "OPAQUE": allows the usage of a global opacity value. The value passed must be a string containing an integer ("%d") [0=full transparent,

255=full opaque]. Use NULL to reset to the default. Default: 255.

� "PATTERN": creates a pattern with regular primitives (except images). The value passed must be a string containing two integeres with

the pattern size ("%dx%d") [widthxheight]. Just call regular primitives. Use NULL to end the pattern creation and set the interior style.

� "PDF": Returns the "PDF*" handle of the PDFLib.

CD_PS - PostScript Driver (cdps.h)

This drivers allows generating a PostScript file. This format was created to be a high-quality graphics language for printers and is currently
supported by several printers. If your printer supports PostScript, you can send the file generated by the driver directly to the printer port.
Usually, the filename has an extension .PS or .EPS. The driver generates level-2 PostScript, therefore some PostScript viewers might present
errors. The format's copyrights are property of Adobe Systems.

Use

The file is created and opened by calling function cdCreateCanvas(CD_PS, Data), in which Data contains the filename and canvas

dimensions. This function opens the file and writes its header. Then, other functions in the CD library can be called as usual. The Data

parameter string has the following format:

"filename -p[paper] -w[width] -h[height] -l[left] -r[right] -b[bottom] -t[top] -s[resolution] [-e] [-g] [-o] [-1] d[margin]

or in C

"%s -p%d -w%g -h%g -l%g -r%g -b%g -t%g -s%d -e -o -1 -g -d%g"

The filename must be inside double quotes (") if it has spaces. Any amount of such canvases may exist simultaneously. It is important to note
that a call to function cdKillCanvas is required to close the file properly.

Paper Size - The default paper size is A4. It is possible to change it by using one of the predefined sizes - CD_A0, CD_A1, CD_A2, CD_A3, CD_A4,

CD_A5, CD_LETTER and CD_LEGAL - with parameter "-p". It is also possible to define a paper in a particular size by using parameters "-w" e "-

h". Values are provided in millimeters.

Margins - The margins are controlled by parameters "-l" "-r" "-t" and "-b" (left, right, top, bottom). Values are provided in millimeters.

Default margins are 25.4 mm to all parameters. You can draw only inside the margins.

Resolution - Resolution is used to convert values from millimeters to pixels (the same as points, but the number of points is per inch - DPI). Use
parameter "-s" to configure the resolution. The default value is 300 DPI.

Orientation - The page can be oriented as portrait or landscape. The default value is portrait, but when the parameter "-o" is used, the horizontal
and vertical values are switched.

EPS - The PostScript file can be in an Encapsulated PostScript format. For such, simply specify the parameter "-e". It is useful for other

applications to import the PostScript file. You can define the margins of the bounding box by means of parameter "-d", in millimeters.

Debug - Parameter "-g" adds a series of comments to the PS file, making the beginning and end of a command from the CD library explicit. It

is useful only for those who understand PostScript and wish to identify a problem. It considerably increases the file size.

Level 1 - Parameter "-1" forces the driver to generate a level-1 PostScript. In this case, pattern, stipple and hatch are not supported.

Pages - Use function cdFlush to change to a new page. The previous page will not be changed.

Behavior of Functions

Control

� Play: does nothing, returns CD_ERROR.

� Flush: changes to a new page, preserving the previous one. Does nothing in EPS mode.

� Clear: does nothing.

Default Paper Sizes

 Width (mm) Length (mm)

A0 841 1187

A1 594 841

A2 420 594

A3 297 420

A4 210 297

A5 148 210

Letter 216 279

Legal 216 356

Page 53 of 65

Coordinate System & Clipping

� GetCanvasSize: returns the page's size within the margins (drawing area).

� UpdateYAxis: does nothing.

� Complex Regions: not supported.

Attributes

� Background does nothing, returns CD_WHITE.

� BackOpacity: does nothing, returns CD_TRANSPARENT.

� WriteMode: does nothing, returns CD_REPLACE.

� FontDim: is simulated.

� TextSize: is simulated.

� Hatch: is always opaque (to be implemented).

� Stipple: is always opaque (to be implemented).

� TextAlignment: Baseline is the same as South.

� Font: old name "System" is mapped to "Courier". Styles are added to the Postscript font name.

Colors

� GetColorPlanes: returns 24.

� Palette: does nothing.

Client Images

� GetImageRGB: does nothing.

� PutImageMap: stores an RGB image in the file (to be implemented).

� PutImageRGBA: alpha is ignored (to be implemented).

Primitives

� Pixel: does not exist in PS, is simulated using a circle with radius=1.

� Floating point primitives are supported.
� Filled primitves do not include the line at the edges of the filled area.

Server Images

� All functions do nothing.

Exclusive Attributes

� "POLYHOLE": defines the index of the vertex where there is a hole in a closed polygon. It will affect the next cdEnd. Can be called several

times between cdBegin and cdEnd to define holes. The value passed must be a string containing an integer ("%d"). If the value of the
attribute passed is NULL, all holes will no longer be considered. When consulted returns the current number of holes ("%d"). It can have a
maximum of 500 holes.

� "CMD": saves a string directly to the file. Allows adding PostScript commands to the file generated by the CD library. (set only)

� "ROTATE": allows the usage of 1 angle and 1 coordinate (x, y), that define a global rotation transformation centered in the specified

coordinate. Use 1 real and 2 integer values inside a string ("%g %d %d" = angle x y).

CD_METAFILE - CD Metafile Driver (cdmf.h)

This driver allows the generation of a CD Metafile, a very simple format that includes calls to functions of the CD library and provides
persistence to its primitives.

Use

The file is created by calling function cdCreateCanvas(CD_METAFILE, Data). The Data parameter is a string that must contain the

filename and the canvas dimensions, in the following format:

"filename [widthxheight resolution]" or in C use "%s %gx%g %g"

Only the parameter filename is required. The filename must be inside double quotes (") if it has spaces. Width and height are provided

in millimeters (note the lowercase "x" between them), and their default value in pixels is INT_MAX for both dimensions. Resolution is the

number of pixels per millimeter; its default value is "3.78 pixels/mm" (96 DPI). Width, height and resolution are real values.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to close the

file properly.

Images - Be careful when saving images in the file, because it uses a text format to store all numbers and texts of primitives, including images,
which significantly increases its size.

Extension - Although this is not required, we recommend the extension used for the file to be ".MF".

Behavior of Functions

Coordinate System and Clipping

Page 54 of 65

� Play: implemented.

� UpdateYAxis: does nothing.

� Complex Regions: not supported.
� Clear: removes all primitives from the picture.

Attributes

� FontDim: uses a size estimator, returning approximate values.

� TextSize: uses a size estimator, returning approximate values.

Colors

� GetColorPlanes: always returns 24.

Primitives

� Floating point primitives are supported.

Client Images

� GetImageRGB: does nothing.

Server Images

� All functions do nothing.

CD_CGM - Computer Graphics Metafile Driver (cdcgm.h)

This driver allows generating a Computer Graphics Metafile, which is an ANSI standard for the persistent storage of graphics primitives. The
file usually has an extension .CGM.

Use

The file file is created by means of a call to the function cdCreateCanvas(CD_CGM, Data), which opens the file and writes its header.

Then, other functions in the CD library can be called as usual. The Data parameter string has the following format:

"filename [widthxheight] [resolution] [-t] -p[precision]" or in C style "%s %gx%g %g %s"

Only the parameter filename is required. The filename must be inside double quotes (") if it has spaces. Width and height are provided

in millimeters (note the lowercase "x" between them), and their default value in pixels is INT_MAX for both dimensions. When the canvas' size

is not specified, the VDC Extension saved to the file is the image's bounding rectangle. The resolution is the number of pixels per millimeter; its
default value is "3.78 pixels/mm" (96 DPI). Width, height and resolution are real values. Width, height and resolution are used

only by cdGetCanvasSize and in pixel-millimeter conversion. Parameter -t modifies the codification. Parameter -p specifies the precision

of integers, which can be 16 (default) or 32.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to close the

file properly.

Coding - The CGM format supports binary and text coding. If you are not sure what to do, use binary coding, which is the default. Should you
prefer text coding, add a "-t" string to the Data parameter.

Precision of Coordinates - The primitives can use coordinates in real numbers. However, for compatibility reasons, we use coordinates in
integers.

Behavior of Functions

Control

� Clear: does nothing.

� Flush: creates a new image, preserving the previous one. The CGM format supports multiple images in a file.

� Play: works with files created with text or binary coding. There are several callbacks for this driver. If one of the callbacks returns a value

different from zero, cdPlay's processing is interrupted. The driver implements the callback CD_SIZECB and other callbacks associated to

CGM:
CD_COUNTERCB - int(*cdcgmcountercb)(cdContext *driver, double percent) - Executed for each header of CGM

commands; returns the percentage (0-100%) of headers read.
CD_SCLMDECB - int(*cdcgmsclmdecb)(cdContext *driver, short scl_mde, short *drw_mode, double *factor) -

Executed for the command CGM SCALE MODE. Returns the current CGM scale mode and allows the callback to modify the scale mode
used by the cdPlay function (ABSTRACT=0, METRIC=1). Should you choose the METRIC or ABSTRACT scale mode but the

original scale mode is METRIC, you must provide the conversion factor in mm per pixel.
CD_VDCEXTCB - int(*cdcgmvdcextcb)(cdContext *driver, short type, void *xmn, void *ymn, void *xmx, void *ymx)

- Executed for the CGM command CGM VDC EXTENT, returns the VDC SPACE.

CD_BEGPICTCB - int(*cdcgmbegpictcb)(cdContext *driver, char *pict) - Executed for the command BEGIN PICTURE,

returns the string that describes the image.
CD_BEGPICTBCB - int(*cdcgmbegpictbcb)(cdContext *driver) - Executed for the command BEGIN PICTURE BODY.

CD_CGMBEGMTFCB - int (*cdcgmbegmtfcb)(cdContext *driver, int *xmin, int *ymin, int *xmax, int *ymax) - Executed

for the command BEGIN METAFILE, provides the drawing limits of the image in the file.

Coordinate System and Clipping

Page 55 of 65

� UpdateYAxis: does nothing. The axis orientation is the same as the CD library.

� Complex Regions: not supported.
� Transformation Matrix: not supported.

Primitives

� Begin: if parameter CD_CLIP or CD_BEZIER are specified, does nothing.

� Pixel: does not exist in CGM, is simulated using a mark with size 1.

� Chord: does nothing.

� Floating point primitives are supported.

Attributes

� WriteMode: does nothing, returns CD_REPLACE.

� FontDim: is simulated.

� FillMode: does nothing.

� LineCap: does nothing.

� LineJoin: does nothing.

� TextSize: is simulated.

� TextOrientation: does nothing.

� Font: see the table bellow for the generated font names. No other fonts are supported.

Colors

� GetColorPlanes: returns 24.

� Palette: does nothing.

Client Images

� GetImageRGB: does nothing.

� PutImageRGBA: alpha is ignored.

Server Images

� All functions do nothing.

CD_DGN - MicroStation Design File Driver (cddgn.h)

This driver allows generating a MicroStation design file. The file name usually has an extension .DGN. The driver supports only MicroStation
version 4.0 or later. The format's copyrights are property of Bentley Systems.

Use

The file is created and opened by calling function cdCreateCanvas(CD_DGN, Data), in which Data contains the filename and canvas

dimensions. This function opens the file and writes its header. Then, other functions in the CD library can be called as usual. The Data

parameter string has the following format:

Font Mapping

CD Fonts
Generated Font Names

CD_PLAIN CD_BOLD CD_ITALIC CD_BOLD|CD_ITALIC

"System" "SYSTEM" "SYSTEM_BOLD" "SYSTEM_ITALIC" "SYSTEM_BOLDITALIC"

"Courier" "COURIER" "COURIER_BOLD" "COURIER_ITALIC" "COURIER_BOLDITALIC"

"Times" "TIMES_ROMAN" "TIMES_ROMAN_BOLD" "TIMES_ROMAN_ITALIC" "TIMES_ROMAN_BOLDITALIC"

"Helvetica" "HELVETICA" "HELVETICA_BOLD" "HELVETICA_ITALIC" "HELVETICA_BOLDITALIC"

"filename [widthxheight] [resolution] [-f] [-sseedfile]" or in C "%s %gx%g %g %s"

Only the parameter filename is required. The filename must be inside double quotes (") if it has spaces. Width and height are provided

in millimeters (note the lowercase "x" between them), and their default value in pixels is INT_MAX for both dimensions. Resolution is the

number of pixels per millimeter; its default value is "3.78 pixels/mm" (96 DPI). Width, height and resolution are real values. Parameter

-f modifies the polygon filling's behavior. Just as in MicroStation, you can specify a seed file using parameter -s. Width, height and

resolution are used only by cdCanvasGetSize and in pixel-millimeter conversion.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to close the

file properly.

Images and Colors - The DGN format does not support server images and works with an indexed-color format. Color quality is limited to 256
colors, and the format uses a uniform palette to convert RGB colors into palette indices. If you configure a palette, the color conversion process
will become slower.

Filling - Up to version 5.0, MicroStation presents some limitations for polygon filling. You can disable filling by means of string "-f" in the

Data parameter. Filled polygons can only have around 10,000 vertices; if the value is larger, the polygon style changes to closed lines.

Page 56 of 65

Seed - In the seed file, several DGN parameters can be defined to be used in the drawing. The library offers a default seed file, called
"SEED2D.DGN". The file's location depends on the environment variable CDDIR.

Behavior of Functions

Control

� Clear: does nothing.

� Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

� Clip: does nothing (no clipping function is supported), returns CD_CLIPOFF.

� UpdateYAxis: does nothing. The axis orientation is the same as the CD library.

� Transformation Matrix: not supported.

Primitives

� Begin: if parameter CD_CLIP or CD_BEZIER are specified, does nothing.

� cdChord: does nothing.

Attributes

� BackOpacity: does nothing, returns CD_OPAQUE.

� WriteMode: does nothing, returns CD_REPLACE.

� InteriorStyle: does nothing.

� FillMode: does nothing.

� LineCap: does nothing.

� LineJoin: does nothing.

� Hatch: does nothing.

� Stipple: does nothing.

� Pattern: does nothing.

� TextSize: returns a bounding box which is usually larger than the text (the computation is based on the widest character).

� TextAlignment: uses cdTextSize, therefore is not precise.

� Font: See the font mapping table for the equivalence used to map CD fonts into MicroStation fonts. Styles are not supported.

Colors

� GetColorPlanes: returns 8 (MicroStation uses a palette with 256 values).

� Background: always returns CD_WHITE.

Client Images

� GetImageRGB: does nothing.

� PutImageRGB: considering that the format supports only 256 colors, image quality is quite poor.

� PutImageRGBA: alpha is ignored.

� PutImageMap: considering that the format supports only 256 colors, image quality is quite poor.

Server Images

� All functions do nothing.

CD_DXF - AutoCAD Image Exchange File Driver (cddxf.h)

This driver allows generating an AutoCAD image exchange file. The file name usually has an extension .DXF. This driver supports only
AutoCAD version 10.0 or later. The format's copyrights are property of Autodesk.

Use

The file is created and opened by calling function cdCreateCanvas(CD_DXF, Data), in which Data contains the file name and canvas

dimensions. This function opens the file and writes its header. Then, other functions in the CD library can be called as usual. The Data

parameter string has the following format:

Font Mapping

CD Fonts MicroStation Font Index

CD_SYSTEM 0

CD_COURIER 1

CD_TIMES_ROMAN 2

CD_HELVETICA 3

"filename [widthxheight] [resolution]" or in C "%s %gx%g %g"

Only the parameter filename is required. The filename must be inside double quotes (") if it has spaces. Width and height are provided

Page 57 of 65

in millimeters (note the lowercase "x" between them), and their default value in pixels is INT_MAX for both dimensions. Resolution is the

number of pixels per millimeter; its default value is "3.78 pixels/mm" (96 DPI). Width, height and resolution are given in real values

and are used only by cdCanvasGetSize and in pixel-millimeter conversion.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to close the

DXF file properly.

Images - The DXF format does not support client or server images and works with an indexed-color format (color quality is limited to 256 fixed
colors).

Precision of Coordinates - The primitives use coordinates in real numbers.

Layers - The format can work with several layers. It is necessary to draw the primitives of layer '0' first, then layer '1' and so on. Use functions
Flush to change the current layer.

Behavior of Functions

Control

� Flush: changes the current layer (the initial layer is '0', followed by '1' and so on).

� Clear: does nothing.

� Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

� Clip: does nothing (no clipping function is supported), returns CD_CLIPOFF.

� UpdateYAxis: does nothing. Axis orientation is the same as in the CD library.

� Transformation Matrix: not supported.

Primitives

� Box: draws only the box's borders (no filling function is supported). Behaves like Rect.

� Sector: draws a "hollow" sector, that is, only its borders.

� Begin: CD_FILL is mapped to CD_CLOSED_LINES. if parameter CD_CLIP or CD_BEZIER are specified, does nothing.

� Chord: does nothing.

� Floating point primitives are supported.

Attributes

� BackOpacity: does nothing, returns CD_TRANSPARENT.

� WriteMode: does nothing, returns CD_REPLACE.

� InteriorStyle: does nothing (filling is not supported), returns 0.

� Hatch: does nothing.

� FillMode: does nothing.

� LineCap: does nothing.

� LineJoin: does nothing.

� Stipple: does nothing.

� Pattern: does nothing.

� TextSize: returns a bounding box usually larger than the text (the computation is based on the widest character).

� TextOrientation: does nothing.

� Font: italic styles correspond to the basic styles with an inclination of 15
o
. See the font mapping table for the equivalence used to map

fonts of the CD library into AutoCAD fonts. No other fonts are supported.

Colors

� Foreground: indexes long int *color in the fixed palette (AutoCAD uses a 256-color palette - for further detail, see

AutoCAD's Reference Manual).
� Background: does nothing, returns CD_WHITE.

� GetColorPlanes: returns 8.

� Palette: does nothing (the palette is fixed).

Font Mapping

CD Fonts AutoCAD Fonts

System STANDARD (sem arquivo)

Courier ROMAN (romanc.shx)

Courier + CD_BOLD ROMAN_BOLD (romant.shx)

Times ROMANTIC (rom_____.pfb)

Times + CD_BOLD ROMANTIC_BOLD (romb_____.pfb)

Helvetica SANSSERIF (sas_____.pfb)

Helvetica + CD_BOLD SANSSERIF_BOLD (sasb____.pfb)

Page 58 of 65

Client Images

� All functions do nothing.

Server Images

� All functions do nothing.

CD_EMF - Enhanced Metafile Driver (cdemf.h)

This driver allows generating a Microsoft Windows Enhanced Metafile, the format used by 32-bit Windows systems to store graphics
primitives. Usually, the filename has an extension "*.emf".

The driver works only in the Microsoft Windows platform, but you can use it in other platforms without the risk of compilation error. If you
attempt to create a canvas in another platform, function cdCreateCanvas will return NULL.

Use

The canvas is created by means of a call to function cdCreateCanvas(CD_EMF, Data), after which other CD functions can be called as

usual. Parameter Data has the following format:

"filename widthxheight" or in C "%s %dx%d"

It must include the filename and the canvas' dimensions. The filename must be inside double quotes (") if it has spaces. Width and height

are provided in pixels (note the lowercase "x" between them). Resolution (the number of pixels per millimeter) is always the screen resolution.

Any amount of such canvases may exist simultaneously. Function cdCreateCanvas opens the file, and a call to function cdKillCanvas

is required to close the file properly.

To use this driver in Windows using GDI+ is necessary to call cdUseContextPlus(1) before creating the canvas. If you intend to use

cdCanvasPlay to interpret the EMF, then do not use GDI+ to generate the metafile. GDI+ extensively use internal transformations that will
affect the cdCanvasPlay interpretation. Also some interior style will not be correctly interpreted.

Behavior of Functions

This driver is greatly platform-dependent. For further detail, see the Behavior of Functions of the Microsoft Windows (GDI) or Windows
Using GDI+ platform base drivers. It has been noticed that EMF, when saved in the Windows 95 environment, is not totally compatible with
EMF saved in the Windows NT environment.

Control Functions

� Play: different from the basic driver, is implemented. Not implemented using GDI+.

� Clear: different from the basic driver, does nothing.

Client Images

� GetImageRGB: does nothing.

Server Images

� All functions do nothing.

CD_WMF - Windows Metafile Driver (cdwmf.h)

This driver allows creating a Microsoft Windows Metafile, the format used by 16-bit Windows systems to store graphics primitives. Usually,
the filename has an extension "*.wmf".

The driver works only in the Microsoft Windows platform, but you can use it in other platforms without the risk of compilation error. If you
attempt to create a canvas in another platform, function cdCreateCanvas will return NULL.

It is recomended to use EMF instead of WMF whenever is possible.

Use

The canvas is created by means of a call to the function cdCreateCanvas(CD_WMF, Data), after which other functions in the CD library

can be called as usual. The Data parameter string has the following format:

"filename widthxheight [resolution]" or in C "%s

 %dx%d %g"

The file's name and dimensions are required. Width and height are provided in pixels (note the lowercase "x" between them). Resolution

is the number of pixels per millimeter; its default value is the screen resolution.

Any amount of such canvases may exist simultaneously. Function cdCreateCanvas creates a memory-based metafile, and a call to function

cdKillCanvas is required to close the file properly.

In fact the driver uses a slightly different format, called Aldus Placeable Metafile (APM). It attaches a small header to the beginning of the file,

Page 59 of 65

allowing other applications to import better the metafile contents.

This driver is NOT available for the GDI+ base driver.

Behavior of Functions

This driver is greatly platform-dependent. For further detail, see the Behavior of Functions of the Microsoft Windows (GDI) platform.
However, it should be noted that some functions behave differently from the basic functions of each platform.

Control

� Play: different from the basic driver, is implemented.

� Clear: different from the basic driver, does nothing.

Coordinate System and Clipping

� Clip: does nothing, returns CD_CLIPOFF.

Attributes

� Stipple: is always opaque and smaller than 8x8 pixels.

� Pattern: does nothing.

� LineWidth: is always 1.

� TextAlignment: CD_CENTER/CD_WEST/CD_EAST is saved as CD_BASE_CENTER/CD_BASE_LEFT/CD_BASE_RIGHT, but

the position error is compensated.
� TextOrientation: does nothing

Client Images

� GetImageRGB: does nothing.

� PutImageRGBA: the alpha component is ignored.

Server Images

� All functions do nothing.

CD_DEBUG - CD Debug Driver (cddebug.h)

This driver creates a text file with a log of all function calls. But for only the functions that have a driver implementation and in the order that
the driver implements sequece of functions like Begin/Vertex/End. Pointers are stored as addresses, and definitions are stored as the CD
definition "CD_XXX".

Use

The file is created by calling function cdCreateCanvas(CD_DEBUG, Data). The Data parameter is a string that must contain the

filename and the canvas dimensions, in the following format:

"filename [widthxheight resolution]" or in C use "%s %gx%g %g"

Only the parameter filename is required. The filename must be inside double quotes (") if it has spaces. Width and height are provided

in millimeters (note the lowercase "x" between them), and their default value in pixels is INT_MAX for both dimensions. Resolution is the

number of pixels per millimeter; its default value is "3.78 pixels/mm" (96 DPI). Width, height and resolution are real values.

Any amount of such canvases may exist simultaneously. It is important to note that a call to function cdKillCanvas is required to close the

file properly.

Behavior of Functions

Coordinate System and Clipping

� Play: NOT implemented.

� UpdateYAxis: does nothing.

Attributes

� FontDim: uses a size estimator, returning approximate values.

� TextSize: uses a size estimator, returning approximate values.

Colors

� GetColorPlanes: always returns 24.

Simulation Base Driver

The Simulation driver was created to simulate functions that were not supported by some CD drivers. It works jointly with the other driver
(known as "client"), using its pixel, line and text functions to simulate arcs, sectors, polygons, boxes, and fillings with styles.

Important: All simulation primitives are based in the client's Pixel, Image and/or Line functions.

Page 60 of 65

Use

The Simulation driver is used in several parts of the CD library.

In many drivers, the behavior of a given primitive may not be the expected. Usually this is documented in the manual. If you wish to activate the
simulation of a primitive, simply call function cdSimulate with the code of the primitive to be simulated.

Behavior of Functions

Clipping

� Clipping is not implemented in the simulation base driver. The primary driver must implement its own clipping.

Attributes

� LineCap: only CD_CAPFLAT is supported.

� LineJoin: only CD_MITER is supported.

� LineStyle: If line width is greater than 1, the style is always continuous.

� Font: Selects a True Type font file for the FreeType library to render the text. Notice that TTF fonts have different files for different font

styles, like bold and italic. Font files can be in the current directory, in the directory pointed by the CDDIR environment variable, in
Windows in the system defined Font directory, or using the full path of the file.
Old name "System" is mapped to "Courier". For the know font names "Courier" (cour), "Times" (times) and "Helvetica" (arial), the

styles are added to the font file name as a suffix: "bd", "i" and "bi" are used for bold, italic and bold-italic. For other fonts, it will first
check for a font map added using the attribute ADDFONTMAP, if failed it will try to load the type_face name without any change, if fail
it will add the style suffix to the type_face and try to load again. The ".ttf" file extension is always automatically added to the end of the
file name.

Primitives

� Pixel: always uses the client's pixel function. When clipping simulation is active, it executes area and polygon clipping.

� Line: draws lines pixel per pixel.

� Rect: simulated using the client's Line.

� Arc: simulated using the client's Line.

� Sector: simulated using the client's Poly.

� Chord: simulated using the client's Poly

� Box: simulated using the client's Poly.

� Begin, Vertex and End: simulate using the Line or Pixel functions, depending on the interior style.

� Text: text simulation is made using TrueType font files in a transparent way for the user. Oriented text is not supported.

Exclusive Attributes

� "ADDFONTMAP": Add a font map between a type face name and a file name. It has the format "Type Face=filename", For ex: "Arial
Narrow Bold=ARIALNB". "Type Face" is not case sensitive.

Microsoft Windows Base Driver

This driver represents a base driver for all system-dependent drivers implemented in the Microsoft Windows system. The implementation uses
Win32 API graphics functions, the GDI. The driver works better in Windows NT, but it may also work in Windows 9x/Me.

Behavior of Functions

Control

� Flush: does nothing.

� Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

� UpdateYAxis: the orientation of axis Y is the opposite to its orientation in the CD library.

Primitives

� Text: when Write Mode is XOR or NOT_XOR, the XOR effect is simulated using bitmaps.

� Line: needs to draw an extra pixel in the final position.

Attributes

� WriteMode: for the client and server image functions, the mode NOT_XOR works as XOR.

� Stipple: is always opaque. If not in Windows NT and if width or height are greater than 8, the stipple is simulated using non-

regular Windows clipping regions and bitmaps. The simulation is made when filled boxes, sectors and polygons are drawn.
� Pattern: If not in Windows NT and if width or height are greater than 8, the pattern is simulated using non-regular Windows

clipping regions and bitmaps. The simulation is made when filled boxes, sectors and polygons are drawn.
� TextAlignment: the vertical alignment of CD_CENTER, CD_EAST, CD_WEST is manually calculated.

� LineWidth: If not in Windows NT line width is always 1. If line width is 1, then a cosmetic pen is used for fast drawing.

� LineStyle: If line width is 1, the style is a little different from when line width is not 1, because a cosmetic pen is used for width=1.

� NativeFont: also accepts "-d" to show the font-selection dialog box.

� Font: "Courier" is mapped to "Courier New", "Helvetica" is mapped to "Arial", and "Times" is mapped to "Times New Roman".

Underline and Strikeout are supported. The System font does not have orientation.

Page 61 of 65

Client Images

� PutImageRGBA: Try to use the new GDI function AlphaBlend, if not available captures an image from the canvas to blend it manually.

Colors

� Palette: is useful only if the device has 256 colors. If it has less than 256 colors, ignore this function, for it will not make much

difference. If two different canvases have their palettes modified, the last one to be modified will have the best quality; the other one will
not have good quality and the colors might have a completely different appearance.

Exclusive Attributes

� "HDC": returns the HDC of the Win32 canvas. It can only be retrieved (get only). In Lua is returned as a user data.

� "PENFILLPOLY": controls the polygon filling outline. Assumes values "1" (active) and "0" (inactive). Default value: "1". When a filled

polygon is drawn, a line in the same color is used to draw the border which is not included in the filling. Deactivating this attribute solves
the problem of polygons with holes, in which there is a line connecting the external polygon to the internal polygon.

� "IMAGEFORMAT": defines the number of bits per pixel used to create server images. It uses 1 integer that can have the values: "32" or

"24" (%d). Use NULL to remove the attribute. It is used only in the cdCreateImage. When not defined, the server images use the same

format of the canvas.

� "IMAGEALPHA": allows the usage of an alpha channel for server images if IMAGEFORMAT=32. The attribute format is a pointer to the

transparency values in a sequence of chars in the same format of alpha for client images. The attribute is used only in the
cdCreateImage and for every cdPutImageRect, the pointer must exists while the image exists. The alpha values are transfered to

the image only in cdPutImageRect, so they can be freely changed any time. It will use the AlphaBlend GDI function. The data is

not duplicated, only the pointer is stored. The size of the data must be the same size of the image. Use NULL to remove the attribute. Not
accessible in Lua.

� "IMAGEMASK": defines a binary transparency mask for server images. The format is the same of a stipple, can contain only 0s and 1s. Use

2 integers, width and height, and a char pointer to the mask values inside a string ("%d %d %p"). Use NULL to remove the attribute. It can
not be retrieved (set only). Not accessible in Lua. It will use the MaskBlt GDI function.

� "IMAGEPOINTS": define 3 coordinates of a paralelogram that will be used to warp server images. Use 6 integer values inside a string

("%d %d %d %d %d %d" = x1 y1 x2 y2 x3 y3). Use NULL to remove the attribute. The respective specified points are the upper-left
corner, the upper-right corner and the lower left corner. The drawing is also affected by the "IMAGEMASK" attribute. It will use the
PlgBlt GDI function.

� "ROTATE": allows the usage of 1 angle and 1 coordinate (x, y), that define a global rotation transformation centered in the specified

coordinate. Use 1 real and 2 integer values inside a string ("%g %d %d" = angle x y).

Microsoft Windows Base Driver Using GDI+

This driver represents a base driver for all system-dependent drivers implemented in the Microsoft Windows system, but uses a new API called
GDI+. The drivers Clipboard, Native Window, IUP, Image, Printer, EMF and Double Buffer were implemented. The driver WMF, and the
function cdPlay of the Clipboard and EMF drivers were not implemented using GDI+.

The main motivation for the use of GDI+ was transparency for all the primitives. Beyond that we got other features like anti-aliasing, gradient
filling, bezier lines and filled cardinal splines.

This driver still does not completely replace the GDI Windows base driver, because GDI+ does not have support for XOR. Also the applications
need to adapt the rendering of text that is slightly different from GDI. It is know that GDI+ can be slower than GDI in some cases and faster in
other cases, Microsoft does not make this clear.

So we let the programmer to choose what to use. We created the function cdUseContextPlus that allows to activate or to deactivate the use

of GDI+ for the available Windows based drivers. This function affects only the cdCreateCanvas function call, once created the canvas will

be always a GDI+ canvas. In fact the function affects primary the definitions CD_NATIVEWINDOW, CD_IMAGE, CD_PRINTER, CD_EMF,

CD_DBUFFER and CD_CLIPBOARD, because they are function calls and not static defines.

Using GDI+ it is allowed to create more that one canvas at the same time for the same Window. And they can co-exist with a standard GDI
canvas.

To enable the use of GDI+ based drivers you must call the initialization function cdInitContextPlus() once and link to the libraries

"cdcontextplus.lib" and "gdiplus.lib". Also the file "gdiplus.dll" must be available in your system. These files already came with Visual C++ 7
and Windows XP. For other compilers or systems you will need to copy the ".lib" file for you libraries area, and you will need to copy the DLL
for the Windows\System (Win98/Me) or Windows\System32 (Win2000/NT4-SP6) folder. The gdiplus files can be obtained from Microsoft or
from here.

In CDLua it is not necessary any additional initialization, but the application must still be linked with the cdcontextplus.lib library or a
require"cdluacontextplus" can be used when using dynamic libraries.

Behavior of Functions

Control

� Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

Page 62 of 65

� UpdateYAxis: the orientation of axis Y is the opposite to its orientation in the CD library. Except when using transformations.

Primitives

� Pixel: uses GDI. Excepting when the canvas is an image so it is done using GDI+.

� Sector: it also draws an arc in the same position to complete the size of the sector.

� Text: opaque text is simulated using a rectangle in the back.

� Begin: Beyond the standard modes it accepts the additional modes: CD_FILLSPLINE and CD_FILLGRADIENT. The C definitions of these

modes are available in the cdgdiplus.h header.

CD_SPLINE defines the points of a curve constructed by a cardinal spline. Uses the current line style.

CD_FILLSPLINE defines the points of a filled curve constructed by a cardinal spline. Uses the current interior style.

CD_FILLGRADIENT defines the points of a filled polygon. It is filled with a gradient from colors in each vertex to a color in its center. The

colors are defined by the "GRADIENTCOLOR" attribute, that must be set before each cdVertex call and before cdEnd for the center color.

This will not affect the current interior style.

Attributes

� BackOpacity: only changes the transparency of the background color to 0 (transparent) or 255 (opaque).

� Hatch: diagonal styles are drawn with anti-aliasing.

� WriteMode: does nothing. There is no support for XOR or NOT_XOR.

� Pattern: each pixel can contain transparency information.

� LineStyle: uses a custom GDI+ style when line width is 1. In World Coordinates the line style has its scaled changed.

� FontDim: the maximum width is estimated from the character "W".

� TextAlignment: is simulated. Although GDI+ has text alignment, the results do not match the CD text alignment.

� NativeFont: also accepts "-d" to show the font-selection dialog box.

� Font: "System" is mapped to "MS Sans Serif", "Courier" is mapped to "Courier New", "Helvetica" is mapped to "Arial", and "Times" is

mapped to "Times New Roman". Underline and Strikeout are supported.

Colors

� Palette: works only when the canvas is a server image.

� Foreground & Background: accepts the transparency information encoded in the color.

Client Images

� GetImageRGB: uses GDI. Excepting when the canvas is an image so it is done using GDI+.

Server Images

� GetImage: uses GDI. Excepting when the canvas is an image so it is done using GDI+.
� ScrollArea: uses GDI. Excepting when the canvas is an image so it is done using GDI+.

Exclusive Attributes

� "GDI+": returns "1". So the application can detect if the driver uses the GDI+ base driver. Other drivers that do not implement this

attribute will return NULL.

� "HDC": returns the HDC of the Win32 canvas. It can only be retrieved (get only). In Lua is returned as a user data. It is not NULL only in

some Native Windows canvas and in the printer canvas.

� "ANTIALIAS": controls the use of anti-aliasing for the text, image zoom and line drawing primitives. Assumes values "1" (active) and

"0" (inactive). Default value: "1".

� "GRADIENTCOLOR": necessary for the creation of the gradient fill defined by a polygon (see details in the function cdBegin above).

Defines the color of each vertex and the center (%d %d %d" = r g b). It can not be retrieved (set only).

� "IMAGETRANSP": defines an interval of colors to be considered transparent in client and server images (except for RGBA images). It uses

two colors to define the interval ("%d %d %d %d %d %d" = r1 g1 b1 r2 g3 b3). Use NULL to remove the attribute.

� "IMAGEFORMAT": defines the number of bits per pixel used to create server images. It uses 1 integer that can have the values: "32" or

"24" (%d). Use NULL to remove the attribute. It is used only in the cdCreateImage. When not defined, the server images use the same

format of the canvas.

� "IMAGEALPHA": allows the usage of an alpha channel for server images if IMAGEFORMAT=32. The attribute format is a pointer to the

transparency values in a sequence of chars in the same format of alpha for client images. The attribute is used in the cdCreateImage

and for every cdPutImageRect, the pointer must exists while the image exists. The alpha values are transfered to the image only in

cdPutImageRect, so they can be freely changed any time. The data is not duplicated, only the pointer is stored. The size of the data

must be the same size of the image. Use NULL to remove the attribute. Not accessible in Lua.

� "IMAGEPOINTS": define 3 coordinates of a paralelogram that will be used to warp server and client images in the subsequent calls of

PutImage functions. Use 6 integer values inside a string ("%d %d %d %d %d %d" = x1 y1 x2 y2 x3 y3). Use NULL to remove the

attribute. The destination rectangle of the PutImage functions will be ignored. The respective specified points are the upper-left corner,

the upper-right corner and the lower left corner. In GDI+ this attribute is more complete than in GDI, because affects also client images.

� "ROTATE": allows the usage of 1 angle and 1 coordinate (x, y), that define a global rotation transformation centered in the specified

coordinate. Use 1 real and 2 integer values inside a string ("%g %d %d" = angle x y).

Page 63 of 65

� "LINEGRADIENT": defines a filled interior style that uses a line gradient between two colors. It uses 2 points ("%d %d %d %d" = x1

y1 x2 y2), one for the starting point using (using the foreground color), and another one for the end point (using the background color).

� "LINECAP": defines addicional line cap styles. It can have the following values: "Triangle", "NoAnchor", "SquareAnchor",

"RoundAnchor", "DiamondAnchor", or "ArrowAnchor". It can not be retrieved (set only).

X-Windows Base Driver

This driver represents a basic driver for all system-dependent drivers implemented in the X-Windows system. The implementation uses the
XLIB API functions. It was developed using X11R4, but works in more recent versions, such as X11R6.

Note: The coordinates internally implemented by the video driver use 16-bit integers. Therefore, if a coordinate with less than -32k or more than
32k is defined, it will be interpreted incorrectly.

Behavior of Functions

Control

� Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

� UpdateYAxis: the orientation of axis Y is the opposite to its orientation in the CD library.

Primitives

� Text: text orientation is simulated using XVertex rotines. Generic transformation matrix affects only the position of the text.

� Begin: Filled polygons have an error of one pixel to the right and below. CD_BEZIER is simulated with lines.

� Box: in Linux with ATI board, is being drawn with one extra pixel to the right and below.

Attributes

� LineWidth: if width is 1, the driver will use 0 for a better performance.

� LineStyle: thick lines have style only in the line's direction. For example, you will see small rectangles in a thick dotted line.

� NativeFont: also accepts the X-Windows font string format. You can use program xfontsel to select a font and obtain the string. For

ex: "-*-times-bold-r-*-*-24-*-*-*-*-*-*-*" (equivalent of Font("Times", CD_BOLD, -24).
� Font: the old name "System" is mapped to "fixed".

Colors

� Palette: When the number of bits per pixel is smaller than or equal to 8, the driver will use the system palette to solve colors passed as

parameters to the canvas. The driver allocates colors as they are requested - if a color cannot be allocated, the closest color is used in the
palette. For such, the driver sees all available colors, in the current application and others. If one of the applications is terminated, a color
in the palette may become invalid and will only be updated by the driver when it is requested again. For this reason, a call to
cdForeground or cdBackground or cdPalette is recommended before drawing.
When CD_FORCE is used, the driver forces color allocation in the X server. This may imply changing colors in other applications when a
cursor moves in and out of the canvas. However, if the number of requested colors is smaller than the maximum number of possible colors
in the palette, then the first colors in the default system palette will be preserved, minimizing this problem.
When CD_POLITE is used, all colors allocated by the driver are liberated, and the requested colors are allocated. This is useful for the
application to prioritize the colors that will be allocated, causing other colors to be mapped to their closest colors.
Note that canvases in the same application interfere with one another, but when a canvas is terminated it liberates all allocated colors.

Client Images

� GetImageRGB: can be very slow due to the heavy conversions performed to translate data in system format into RGB vectors.

Exclusive Attributes

� "GC": returns the X11 graphics context (get only). In Lua is returned as a user data.

� "ROTATE": allows the usage of 1 angle and 1 coordinate (x, y), that define a global rotation transformation centered in the specified

coordinate. Use 1 real and 2 integer values inside a string ("%g %d %d" = angle x y). In this driver will change the current transformation
matrix, if removed will reset the current transformation matrix.

XRender Base Driver

This driver represents a basic driver for all system-dependent drivers implemented in the X-Windows system using the XRender extension. The
implementation uses the XRender and Xft API functions.

The main motivation for the use of XRender was transparency for all the primitives. Beyond that we got other features like anti-aliasing,
gradient filling and transformations.

This driver still does not completely replace the X-Windows base driver, because XRender does not have support for XOR and for line styles.

So we let the programmer to choose what to use. We created the function cdUseContextPlus that allows to activate or to deactivate the use

of X-Render for the available X-Windows based drivers. This function affects only the cdCreateCanvas function call, once created the

canvas will be always a XRender canvas. In fact the function affects primary the definitions CD_NATIVEWINDOW, CD_IMAGE and

CD_DBUFFER, because they are function calls and not static defines.

Page 64 of 65

Using XRender it is allowed to create more that one canvas at the same time for the same Window. And they can co-exist with a standard X-
Windows canvas.

To enable the use of XRender based drivers you must call the initialization function cdInitContextPlus() once and link to the libraries

"cdcontextplus", "Xrender" and "Xft". Also the libraries "Xrender" and "Xft" must be installed in your system. The XRender extension must
be available in the X-Windows server for the driver to work.

Currently, pre-compiled binaries are available for Linux, Darwin and FreeBSD54. It is not available for the systems we have with AIX, SunOS
and IRIX.

In CDLua it is not necessary any additional initialization, but the application must still be linked with the cdcontextplus.lib library or a
require"cdluacontextplus" can be used when using dynamic libraries.

Behavior of Functions

Control

� Play: does nothing, returns CD_ERROR.

Coordinate System and Clipping

� UpdateYAxis: the orientation of axis Y is the opposite to its orientation in the CD library. Except when using transformations.

Primitives

� Line: simulated using the client's Poly.

� Text: Generic transformation matrix affects only the position of the text. Complex clipping regions can not contain text regions.

� Begin: CD_BEZIER is simulated with lines.

� Rect: simulated using the client's Line.

� Arc: simulated using the client's Line.

� Sector: simulated using the client's Poly.

� Chord: simulated using the client's Poly

� Box: simulated using the client's Poly.

Attributes

� LineWidth: the driver will use a polygon that fits to the line extents, even when linewidth==1.

� LineStyle: NOT supported.

� Pattern: each pixel can contain transparency information.

� NativeFont: also accepts the X-Windows font string format. You can use program xfontsel to select a font and obtain the string. For

ex: "-*-times-bold-r-*-*-24-*-*-*-*-*-*-*" (equivalent of Font("Times", CD_BOLD, -24).
� Font: font support is implemented using the Xft library. Internally the Xft library uses the Freetype library.

Colors

� Use the X-Windows base driver support for colors.

Client and Server Images

� All functions use the X-Windows base driver functions.

Exclusive Attributes

� "GC": returns the X11 graphics context (get only). In Lua is returned as a user data.

� "ROTATE": allows the usage of 1 angle and 1 coordinate (x, y), that define a global rotation transformation centered in the specified

coordinate. Use 1 real and 2 integer values inside a string ("%g %d %d" = angle x y). In this driver will change the current transformation
matrix, if removed will reset the current transformation matrix.

� "ANTIALIAS": controls the use of anti-aliasing for the text, image zoom and line drawing primitives. Assumes values "1" (active) and

"0" (inactive). Default value: "1".

� "LINEGRADIENT": defines a filled interior style that uses a line gradient between two colors. It uses 2 points ("%d %d %d %d" = x1

y1 x2 y2), one for the starting point using (using the foreground color), and another one for the end point (using the background color).
(available only if Xrender version >= 0.10)

� "XRENDERVERSION": returns a string with the XRender version number. It is empty if the XRender extension is not available in the

X-Windows server.

Page 65 of 65

