LCOV - code coverage report
Current view: top level - third_party/openssl/ssl - s3_cbc.c (source / functions) Hit Total Coverage
Test: tmp.zDYK9MVh93 Lines: 0 188 0.0 %
Date: 2015-10-10 Functions: 0 9 0.0 %

          Line data    Source code
       1             : /* ssl/s3_cbc.c */
       2             : /* ====================================================================
       3             :  * Copyright (c) 2012 The OpenSSL Project.  All rights reserved.
       4             :  *
       5             :  * Redistribution and use in source and binary forms, with or without
       6             :  * modification, are permitted provided that the following conditions
       7             :  * are met:
       8             :  *
       9             :  * 1. Redistributions of source code must retain the above copyright
      10             :  *    notice, this list of conditions and the following disclaimer.
      11             :  *
      12             :  * 2. Redistributions in binary form must reproduce the above copyright
      13             :  *    notice, this list of conditions and the following disclaimer in
      14             :  *    the documentation and/or other materials provided with the
      15             :  *    distribution.
      16             :  *
      17             :  * 3. All advertising materials mentioning features or use of this
      18             :  *    software must display the following acknowledgment:
      19             :  *    "This product includes software developed by the OpenSSL Project
      20             :  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
      21             :  *
      22             :  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
      23             :  *    endorse or promote products derived from this software without
      24             :  *    prior written permission. For written permission, please contact
      25             :  *    openssl-core@openssl.org.
      26             :  *
      27             :  * 5. Products derived from this software may not be called "OpenSSL"
      28             :  *    nor may "OpenSSL" appear in their names without prior written
      29             :  *    permission of the OpenSSL Project.
      30             :  *
      31             :  * 6. Redistributions of any form whatsoever must retain the following
      32             :  *    acknowledgment:
      33             :  *    "This product includes software developed by the OpenSSL Project
      34             :  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
      35             :  *
      36             :  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
      37             :  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      38             :  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      39             :  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
      40             :  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      41             :  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
      42             :  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
      43             :  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      44             :  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
      45             :  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
      46             :  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
      47             :  * OF THE POSSIBILITY OF SUCH DAMAGE.
      48             :  * ====================================================================
      49             :  *
      50             :  * This product includes cryptographic software written by Eric Young
      51             :  * (eay@cryptsoft.com).  This product includes software written by Tim
      52             :  * Hudson (tjh@cryptsoft.com).
      53             :  *
      54             :  */
      55             : 
      56             : #include "../crypto/constant_time_locl.h"
      57             : #include "ssl_locl.h"
      58             : 
      59             : #include <openssl/md5.h>
      60             : #include <openssl/sha.h>
      61             : 
      62             : /*
      63             :  * MAX_HASH_BIT_COUNT_BYTES is the maximum number of bytes in the hash's
      64             :  * length field. (SHA-384/512 have 128-bit length.)
      65             :  */
      66             : #define MAX_HASH_BIT_COUNT_BYTES 16
      67             : 
      68             : /*
      69             :  * MAX_HASH_BLOCK_SIZE is the maximum hash block size that we'll support.
      70             :  * Currently SHA-384/512 has a 128-byte block size and that's the largest
      71             :  * supported by TLS.)
      72             :  */
      73             : #define MAX_HASH_BLOCK_SIZE 128
      74             : 
      75             : /*-
      76             :  * ssl3_cbc_remove_padding removes padding from the decrypted, SSLv3, CBC
      77             :  * record in |rec| by updating |rec->length| in constant time.
      78             :  *
      79             :  * block_size: the block size of the cipher used to encrypt the record.
      80             :  * returns:
      81             :  *   0: (in non-constant time) if the record is publicly invalid.
      82             :  *   1: if the padding was valid
      83             :  *  -1: otherwise.
      84             :  */
      85           0 : int ssl3_cbc_remove_padding(const SSL *s,
      86             :                             SSL3_RECORD *rec,
      87             :                             unsigned block_size, unsigned mac_size)
      88             : {
      89             :     unsigned padding_length, good;
      90           0 :     const unsigned overhead = 1 /* padding length byte */  + mac_size;
      91             : 
      92             :     /*
      93             :      * These lengths are all public so we can test them in non-constant time.
      94             :      */
      95           0 :     if (overhead > rec->length)
      96             :         return 0;
      97             : 
      98           0 :     padding_length = rec->data[rec->length - 1];
      99           0 :     good = constant_time_ge(rec->length, padding_length + overhead);
     100             :     /* SSLv3 requires that the padding is minimal. */
     101           0 :     good &= constant_time_ge(block_size, padding_length + 1);
     102           0 :     padding_length = good & (padding_length + 1);
     103           0 :     rec->length -= padding_length;
     104           0 :     rec->type |= padding_length << 8; /* kludge: pass padding length */
     105           0 :     return constant_time_select_int(good, 1, -1);
     106             : }
     107             : 
     108             : /*-
     109             :  * tls1_cbc_remove_padding removes the CBC padding from the decrypted, TLS, CBC
     110             :  * record in |rec| in constant time and returns 1 if the padding is valid and
     111             :  * -1 otherwise. It also removes any explicit IV from the start of the record
     112             :  * without leaking any timing about whether there was enough space after the
     113             :  * padding was removed.
     114             :  *
     115             :  * block_size: the block size of the cipher used to encrypt the record.
     116             :  * returns:
     117             :  *   0: (in non-constant time) if the record is publicly invalid.
     118             :  *   1: if the padding was valid
     119             :  *  -1: otherwise.
     120             :  */
     121           0 : int tls1_cbc_remove_padding(const SSL *s,
     122             :                             SSL3_RECORD *rec,
     123             :                             unsigned block_size, unsigned mac_size)
     124             : {
     125             :     unsigned padding_length, good, to_check, i;
     126           0 :     const unsigned overhead = 1 /* padding length byte */  + mac_size;
     127             :     /* Check if version requires explicit IV */
     128           0 :     if (SSL_USE_EXPLICIT_IV(s)) {
     129             :         /*
     130             :          * These lengths are all public so we can test them in non-constant
     131             :          * time.
     132             :          */
     133           0 :         if (overhead + block_size > rec->length)
     134             :             return 0;
     135             :         /* We can now safely skip explicit IV */
     136           0 :         rec->data += block_size;
     137           0 :         rec->input += block_size;
     138           0 :         rec->length -= block_size;
     139           0 :     } else if (overhead > rec->length)
     140             :         return 0;
     141             : 
     142           0 :     padding_length = rec->data[rec->length - 1];
     143             : 
     144             :     /*
     145             :      * NB: if compression is in operation the first packet may not be of even
     146             :      * length so the padding bug check cannot be performed. This bug
     147             :      * workaround has been around since SSLeay so hopefully it is either
     148             :      * fixed now or no buggy implementation supports compression [steve]
     149             :      */
     150           0 :     if ((s->options & SSL_OP_TLS_BLOCK_PADDING_BUG) && !s->expand) {
     151             :         /* First packet is even in size, so check */
     152           0 :         if ((CRYPTO_memcmp(s->s3->read_sequence, "\0\0\0\0\0\0\0\0", 8) == 0) &&
     153           0 :             !(padding_length & 1)) {
     154           0 :             s->s3->flags |= TLS1_FLAGS_TLS_PADDING_BUG;
     155             :         }
     156           0 :         if ((s->s3->flags & TLS1_FLAGS_TLS_PADDING_BUG) && padding_length > 0) {
     157           0 :             padding_length--;
     158             :         }
     159             :     }
     160             : 
     161           0 :     if (EVP_CIPHER_flags(s->enc_read_ctx->cipher) & EVP_CIPH_FLAG_AEAD_CIPHER) {
     162             :         /* padding is already verified */
     163           0 :         rec->length -= padding_length + 1;
     164           0 :         return 1;
     165             :     }
     166             : 
     167           0 :     good = constant_time_ge(rec->length, overhead + padding_length);
     168             :     /*
     169             :      * The padding consists of a length byte at the end of the record and
     170             :      * then that many bytes of padding, all with the same value as the length
     171             :      * byte. Thus, with the length byte included, there are i+1 bytes of
     172             :      * padding. We can't check just |padding_length+1| bytes because that
     173             :      * leaks decrypted information. Therefore we always have to check the
     174             :      * maximum amount of padding possible. (Again, the length of the record
     175             :      * is public information so we can use it.)
     176             :      */
     177             :     to_check = 255;             /* maximum amount of padding. */
     178           0 :     if (to_check > rec->length - 1)
     179             :         to_check = rec->length - 1;
     180             : 
     181           0 :     for (i = 0; i < to_check; i++) {
     182             :         unsigned char mask = constant_time_ge_8(padding_length, i);
     183           0 :         unsigned char b = rec->data[rec->length - 1 - i];
     184             :         /*
     185             :          * The final |padding_length+1| bytes should all have the value
     186             :          * |padding_length|. Therefore the XOR should be zero.
     187             :          */
     188           0 :         good &= ~(mask & (padding_length ^ b));
     189             :     }
     190             : 
     191             :     /*
     192             :      * If any of the final |padding_length+1| bytes had the wrong value, one
     193             :      * or more of the lower eight bits of |good| will be cleared.
     194             :      */
     195           0 :     good = constant_time_eq(0xff, good & 0xff);
     196           0 :     padding_length = good & (padding_length + 1);
     197           0 :     rec->length -= padding_length;
     198           0 :     rec->type |= padding_length << 8; /* kludge: pass padding length */
     199             : 
     200           0 :     return constant_time_select_int(good, 1, -1);
     201             : }
     202             : 
     203             : /*-
     204             :  * ssl3_cbc_copy_mac copies |md_size| bytes from the end of |rec| to |out| in
     205             :  * constant time (independent of the concrete value of rec->length, which may
     206             :  * vary within a 256-byte window).
     207             :  *
     208             :  * ssl3_cbc_remove_padding or tls1_cbc_remove_padding must be called prior to
     209             :  * this function.
     210             :  *
     211             :  * On entry:
     212             :  *   rec->orig_len >= md_size
     213             :  *   md_size <= EVP_MAX_MD_SIZE
     214             :  *
     215             :  * If CBC_MAC_ROTATE_IN_PLACE is defined then the rotation is performed with
     216             :  * variable accesses in a 64-byte-aligned buffer. Assuming that this fits into
     217             :  * a single or pair of cache-lines, then the variable memory accesses don't
     218             :  * actually affect the timing. CPUs with smaller cache-lines [if any] are
     219             :  * not multi-core and are not considered vulnerable to cache-timing attacks.
     220             :  */
     221             : #define CBC_MAC_ROTATE_IN_PLACE
     222             : 
     223           0 : void ssl3_cbc_copy_mac(unsigned char *out,
     224             :                        const SSL3_RECORD *rec,
     225             :                        unsigned md_size, unsigned orig_len)
     226             : {
     227             : #if defined(CBC_MAC_ROTATE_IN_PLACE)
     228             :     unsigned char rotated_mac_buf[64 + EVP_MAX_MD_SIZE];
     229             :     unsigned char *rotated_mac;
     230             : #else
     231             :     unsigned char rotated_mac[EVP_MAX_MD_SIZE];
     232             : #endif
     233             : 
     234             :     /*
     235             :      * mac_end is the index of |rec->data| just after the end of the MAC.
     236             :      */
     237           0 :     unsigned mac_end = rec->length;
     238           0 :     unsigned mac_start = mac_end - md_size;
     239             :     /*
     240             :      * scan_start contains the number of bytes that we can ignore because the
     241             :      * MAC's position can only vary by 255 bytes.
     242             :      */
     243             :     unsigned scan_start = 0;
     244             :     unsigned i, j;
     245             :     unsigned div_spoiler;
     246             :     unsigned rotate_offset;
     247             : 
     248           0 :     OPENSSL_assert(orig_len >= md_size);
     249           0 :     OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
     250             : 
     251             : #if defined(CBC_MAC_ROTATE_IN_PLACE)
     252           0 :     rotated_mac = rotated_mac_buf + ((0 - (size_t)rotated_mac_buf) & 63);
     253             : #endif
     254             : 
     255             :     /* This information is public so it's safe to branch based on it. */
     256           0 :     if (orig_len > md_size + 255 + 1)
     257           0 :         scan_start = orig_len - (md_size + 255 + 1);
     258             :     /*
     259             :      * div_spoiler contains a multiple of md_size that is used to cause the
     260             :      * modulo operation to be constant time. Without this, the time varies
     261             :      * based on the amount of padding when running on Intel chips at least.
     262             :      * The aim of right-shifting md_size is so that the compiler doesn't
     263             :      * figure out that it can remove div_spoiler as that would require it to
     264             :      * prove that md_size is always even, which I hope is beyond it.
     265             :      */
     266           0 :     div_spoiler = md_size >> 1;
     267           0 :     div_spoiler <<= (sizeof(div_spoiler) - 1) * 8;
     268           0 :     rotate_offset = (div_spoiler + mac_start - scan_start) % md_size;
     269             : 
     270           0 :     memset(rotated_mac, 0, md_size);
     271           0 :     for (i = scan_start, j = 0; i < orig_len; i++) {
     272             :         unsigned char mac_started = constant_time_ge_8(i, mac_start);
     273             :         unsigned char mac_ended = constant_time_ge_8(i, mac_end);
     274           0 :         unsigned char b = rec->data[i];
     275           0 :         rotated_mac[j++] |= b & mac_started & ~mac_ended;
     276           0 :         j &= constant_time_lt(j, md_size);
     277             :     }
     278             : 
     279             :     /* Now rotate the MAC */
     280             : #if defined(CBC_MAC_ROTATE_IN_PLACE)
     281             :     j = 0;
     282           0 :     for (i = 0; i < md_size; i++) {
     283             :         /* in case cache-line is 32 bytes, touch second line */
     284           0 :         ((volatile unsigned char *)rotated_mac)[rotate_offset ^ 32];
     285           0 :         out[j++] = rotated_mac[rotate_offset++];
     286           0 :         rotate_offset &= constant_time_lt(rotate_offset, md_size);
     287             :     }
     288             : #else
     289             :     memset(out, 0, md_size);
     290             :     rotate_offset = md_size - rotate_offset;
     291             :     rotate_offset &= constant_time_lt(rotate_offset, md_size);
     292             :     for (i = 0; i < md_size; i++) {
     293             :         for (j = 0; j < md_size; j++)
     294             :             out[j] |= rotated_mac[i] & constant_time_eq_8(j, rotate_offset);
     295             :         rotate_offset++;
     296             :         rotate_offset &= constant_time_lt(rotate_offset, md_size);
     297             :     }
     298             : #endif
     299           0 : }
     300             : 
     301             : /*
     302             :  * u32toLE serialises an unsigned, 32-bit number (n) as four bytes at (p) in
     303             :  * little-endian order. The value of p is advanced by four.
     304             :  */
     305             : #define u32toLE(n, p) \
     306             :         (*((p)++)=(unsigned char)(n), \
     307             :          *((p)++)=(unsigned char)(n>>8), \
     308             :          *((p)++)=(unsigned char)(n>>16), \
     309             :          *((p)++)=(unsigned char)(n>>24))
     310             : 
     311             : /*
     312             :  * These functions serialize the state of a hash and thus perform the
     313             :  * standard "final" operation without adding the padding and length that such
     314             :  * a function typically does.
     315             :  */
     316           0 : static void tls1_md5_final_raw(void *ctx, unsigned char *md_out)
     317             : {
     318             :     MD5_CTX *md5 = ctx;
     319           0 :     u32toLE(md5->A, md_out);
     320           0 :     u32toLE(md5->B, md_out);
     321           0 :     u32toLE(md5->C, md_out);
     322           0 :     u32toLE(md5->D, md_out);
     323           0 : }
     324             : 
     325           0 : static void tls1_sha1_final_raw(void *ctx, unsigned char *md_out)
     326             : {
     327             :     SHA_CTX *sha1 = ctx;
     328           0 :     l2n(sha1->h0, md_out);
     329           0 :     l2n(sha1->h1, md_out);
     330           0 :     l2n(sha1->h2, md_out);
     331           0 :     l2n(sha1->h3, md_out);
     332           0 :     l2n(sha1->h4, md_out);
     333           0 : }
     334             : 
     335             : #define LARGEST_DIGEST_CTX SHA_CTX
     336             : 
     337             : #ifndef OPENSSL_NO_SHA256
     338           0 : static void tls1_sha256_final_raw(void *ctx, unsigned char *md_out)
     339             : {
     340             :     SHA256_CTX *sha256 = ctx;
     341             :     unsigned i;
     342             : 
     343           0 :     for (i = 0; i < 8; i++) {
     344           0 :         l2n(sha256->h[i], md_out);
     345             :     }
     346           0 : }
     347             : 
     348             : # undef  LARGEST_DIGEST_CTX
     349             : # define LARGEST_DIGEST_CTX SHA256_CTX
     350             : #endif
     351             : 
     352             : #ifndef OPENSSL_NO_SHA512
     353           0 : static void tls1_sha512_final_raw(void *ctx, unsigned char *md_out)
     354             : {
     355             :     SHA512_CTX *sha512 = ctx;
     356             :     unsigned i;
     357             : 
     358           0 :     for (i = 0; i < 8; i++) {
     359           0 :         l2n8(sha512->h[i], md_out);
     360             :     }
     361           0 : }
     362             : 
     363             : # undef  LARGEST_DIGEST_CTX
     364             : # define LARGEST_DIGEST_CTX SHA512_CTX
     365             : #endif
     366             : 
     367             : /*
     368             :  * ssl3_cbc_record_digest_supported returns 1 iff |ctx| uses a hash function
     369             :  * which ssl3_cbc_digest_record supports.
     370             :  */
     371           0 : char ssl3_cbc_record_digest_supported(const EVP_MD_CTX *ctx)
     372             : {
     373             : #ifdef OPENSSL_FIPS
     374             :     if (FIPS_mode())
     375             :         return 0;
     376             : #endif
     377           0 :     switch (EVP_MD_CTX_type(ctx)) {
     378             :     case NID_md5:
     379             :     case NID_sha1:
     380             : #ifndef OPENSSL_NO_SHA256
     381             :     case NID_sha224:
     382             :     case NID_sha256:
     383             : #endif
     384             : #ifndef OPENSSL_NO_SHA512
     385             :     case NID_sha384:
     386             :     case NID_sha512:
     387             : #endif
     388             :         return 1;
     389             :     default:
     390           0 :         return 0;
     391             :     }
     392             : }
     393             : 
     394             : /*-
     395             :  * ssl3_cbc_digest_record computes the MAC of a decrypted, padded SSLv3/TLS
     396             :  * record.
     397             :  *
     398             :  *   ctx: the EVP_MD_CTX from which we take the hash function.
     399             :  *     ssl3_cbc_record_digest_supported must return true for this EVP_MD_CTX.
     400             :  *   md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
     401             :  *   md_out_size: if non-NULL, the number of output bytes is written here.
     402             :  *   header: the 13-byte, TLS record header.
     403             :  *   data: the record data itself, less any preceeding explicit IV.
     404             :  *   data_plus_mac_size: the secret, reported length of the data and MAC
     405             :  *     once the padding has been removed.
     406             :  *   data_plus_mac_plus_padding_size: the public length of the whole
     407             :  *     record, including padding.
     408             :  *   is_sslv3: non-zero if we are to use SSLv3. Otherwise, TLS.
     409             :  *
     410             :  * On entry: by virtue of having been through one of the remove_padding
     411             :  * functions, above, we know that data_plus_mac_size is large enough to contain
     412             :  * a padding byte and MAC. (If the padding was invalid, it might contain the
     413             :  * padding too. )
     414             :  */
     415           0 : void ssl3_cbc_digest_record(const EVP_MD_CTX *ctx,
     416             :                             unsigned char *md_out,
     417             :                             size_t *md_out_size,
     418             :                             const unsigned char header[13],
     419             :                             const unsigned char *data,
     420             :                             size_t data_plus_mac_size,
     421             :                             size_t data_plus_mac_plus_padding_size,
     422             :                             const unsigned char *mac_secret,
     423             :                             unsigned mac_secret_length, char is_sslv3)
     424             : {
     425             :     union {
     426             :         double align;
     427             :         unsigned char c[sizeof(LARGEST_DIGEST_CTX)];
     428             :     } md_state;
     429             :     void (*md_final_raw) (void *ctx, unsigned char *md_out);
     430             :     void (*md_transform) (void *ctx, const unsigned char *block);
     431             :     unsigned md_size, md_block_size = 64;
     432             :     unsigned sslv3_pad_length = 40, header_length, variance_blocks,
     433             :         len, max_mac_bytes, num_blocks,
     434             :         num_starting_blocks, k, mac_end_offset, c, index_a, index_b;
     435             :     unsigned int bits;          /* at most 18 bits */
     436             :     unsigned char length_bytes[MAX_HASH_BIT_COUNT_BYTES];
     437             :     /* hmac_pad is the masked HMAC key. */
     438             :     unsigned char hmac_pad[MAX_HASH_BLOCK_SIZE];
     439             :     unsigned char first_block[MAX_HASH_BLOCK_SIZE];
     440             :     unsigned char mac_out[EVP_MAX_MD_SIZE];
     441             :     unsigned i, j, md_out_size_u;
     442             :     EVP_MD_CTX md_ctx;
     443             :     /*
     444             :      * mdLengthSize is the number of bytes in the length field that
     445             :      * terminates * the hash.
     446             :      */
     447             :     unsigned md_length_size = 8;
     448             :     char length_is_big_endian = 1;
     449             : 
     450             :     /*
     451             :      * This is a, hopefully redundant, check that allows us to forget about
     452             :      * many possible overflows later in this function.
     453             :      */
     454           0 :     OPENSSL_assert(data_plus_mac_plus_padding_size < 1024 * 1024);
     455             : 
     456           0 :     switch (EVP_MD_CTX_type(ctx)) {
     457             :     case NID_md5:
     458           0 :         MD5_Init((MD5_CTX *)md_state.c);
     459             :         md_final_raw = tls1_md5_final_raw;
     460             :         md_transform =
     461             :             (void (*)(void *ctx, const unsigned char *block))MD5_Transform;
     462             :         md_size = 16;
     463             :         sslv3_pad_length = 48;
     464             :         length_is_big_endian = 0;
     465           0 :         break;
     466             :     case NID_sha1:
     467           0 :         SHA1_Init((SHA_CTX *)md_state.c);
     468             :         md_final_raw = tls1_sha1_final_raw;
     469             :         md_transform =
     470             :             (void (*)(void *ctx, const unsigned char *block))SHA1_Transform;
     471             :         md_size = 20;
     472           0 :         break;
     473             : #ifndef OPENSSL_NO_SHA256
     474             :     case NID_sha224:
     475           0 :         SHA224_Init((SHA256_CTX *)md_state.c);
     476             :         md_final_raw = tls1_sha256_final_raw;
     477             :         md_transform =
     478             :             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
     479             :         md_size = 224 / 8;
     480           0 :         break;
     481             :     case NID_sha256:
     482           0 :         SHA256_Init((SHA256_CTX *)md_state.c);
     483             :         md_final_raw = tls1_sha256_final_raw;
     484             :         md_transform =
     485             :             (void (*)(void *ctx, const unsigned char *block))SHA256_Transform;
     486             :         md_size = 32;
     487           0 :         break;
     488             : #endif
     489             : #ifndef OPENSSL_NO_SHA512
     490             :     case NID_sha384:
     491           0 :         SHA384_Init((SHA512_CTX *)md_state.c);
     492             :         md_final_raw = tls1_sha512_final_raw;
     493             :         md_transform =
     494             :             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
     495             :         md_size = 384 / 8;
     496             :         md_block_size = 128;
     497             :         md_length_size = 16;
     498           0 :         break;
     499             :     case NID_sha512:
     500           0 :         SHA512_Init((SHA512_CTX *)md_state.c);
     501             :         md_final_raw = tls1_sha512_final_raw;
     502             :         md_transform =
     503             :             (void (*)(void *ctx, const unsigned char *block))SHA512_Transform;
     504             :         md_size = 64;
     505             :         md_block_size = 128;
     506             :         md_length_size = 16;
     507           0 :         break;
     508             : #endif
     509             :     default:
     510             :         /*
     511             :          * ssl3_cbc_record_digest_supported should have been called first to
     512             :          * check that the hash function is supported.
     513             :          */
     514           0 :         OPENSSL_assert(0);
     515           0 :         if (md_out_size)
     516           0 :             *md_out_size = -1;
     517           0 :         return;
     518             :     }
     519             : 
     520           0 :     OPENSSL_assert(md_length_size <= MAX_HASH_BIT_COUNT_BYTES);
     521           0 :     OPENSSL_assert(md_block_size <= MAX_HASH_BLOCK_SIZE);
     522           0 :     OPENSSL_assert(md_size <= EVP_MAX_MD_SIZE);
     523             : 
     524             :     header_length = 13;
     525           0 :     if (is_sslv3) {
     526           0 :         header_length = mac_secret_length + sslv3_pad_length + 8 /* sequence
     527             :                                                                   * number */  +
     528             :             1 /* record type */  +
     529             :             2 /* record length */ ;
     530             :     }
     531             : 
     532             :     /*
     533             :      * variance_blocks is the number of blocks of the hash that we have to
     534             :      * calculate in constant time because they could be altered by the
     535             :      * padding value. In SSLv3, the padding must be minimal so the end of
     536             :      * the plaintext varies by, at most, 15+20 = 35 bytes. (We conservatively
     537             :      * assume that the MAC size varies from 0..20 bytes.) In case the 9 bytes
     538             :      * of hash termination (0x80 + 64-bit length) don't fit in the final
     539             :      * block, we say that the final two blocks can vary based on the padding.
     540             :      * TLSv1 has MACs up to 48 bytes long (SHA-384) and the padding is not
     541             :      * required to be minimal. Therefore we say that the final six blocks can
     542             :      * vary based on the padding. Later in the function, if the message is
     543             :      * short and there obviously cannot be this many blocks then
     544             :      * variance_blocks can be reduced.
     545             :      */
     546           0 :     variance_blocks = is_sslv3 ? 2 : 6;
     547             :     /*
     548             :      * From now on we're dealing with the MAC, which conceptually has 13
     549             :      * bytes of `header' before the start of the data (TLS) or 71/75 bytes
     550             :      * (SSLv3)
     551             :      */
     552           0 :     len = data_plus_mac_plus_padding_size + header_length;
     553             :     /*
     554             :      * max_mac_bytes contains the maximum bytes of bytes in the MAC,
     555             :      * including * |header|, assuming that there's no padding.
     556             :      */
     557           0 :     max_mac_bytes = len - md_size - 1;
     558             :     /* num_blocks is the maximum number of hash blocks. */
     559           0 :     num_blocks =
     560           0 :         (max_mac_bytes + 1 + md_length_size + md_block_size -
     561             :          1) / md_block_size;
     562             :     /*
     563             :      * In order to calculate the MAC in constant time we have to handle the
     564             :      * final blocks specially because the padding value could cause the end
     565             :      * to appear somewhere in the final |variance_blocks| blocks and we can't
     566             :      * leak where. However, |num_starting_blocks| worth of data can be hashed
     567             :      * right away because no padding value can affect whether they are
     568             :      * plaintext.
     569             :      */
     570             :     num_starting_blocks = 0;
     571             :     /*
     572             :      * k is the starting byte offset into the conceptual header||data where
     573             :      * we start processing.
     574             :      */
     575             :     k = 0;
     576             :     /*
     577             :      * mac_end_offset is the index just past the end of the data to be MACed.
     578             :      */
     579           0 :     mac_end_offset = data_plus_mac_size + header_length - md_size;
     580             :     /*
     581             :      * c is the index of the 0x80 byte in the final hash block that contains
     582             :      * application data.
     583             :      */
     584           0 :     c = mac_end_offset % md_block_size;
     585             :     /*
     586             :      * index_a is the hash block number that contains the 0x80 terminating
     587             :      * value.
     588             :      */
     589           0 :     index_a = mac_end_offset / md_block_size;
     590             :     /*
     591             :      * index_b is the hash block number that contains the 64-bit hash length,
     592             :      * in bits.
     593             :      */
     594           0 :     index_b = (mac_end_offset + md_length_size) / md_block_size;
     595             :     /*
     596             :      * bits is the hash-length in bits. It includes the additional hash block
     597             :      * for the masked HMAC key, or whole of |header| in the case of SSLv3.
     598             :      */
     599             : 
     600             :     /*
     601             :      * For SSLv3, if we're going to have any starting blocks then we need at
     602             :      * least two because the header is larger than a single block.
     603             :      */
     604           0 :     if (num_blocks > variance_blocks + (is_sslv3 ? 1 : 0)) {
     605           0 :         num_starting_blocks = num_blocks - variance_blocks;
     606           0 :         k = md_block_size * num_starting_blocks;
     607             :     }
     608             : 
     609           0 :     bits = 8 * mac_end_offset;
     610           0 :     if (!is_sslv3) {
     611             :         /*
     612             :          * Compute the initial HMAC block. For SSLv3, the padding and secret
     613             :          * bytes are included in |header| because they take more than a
     614             :          * single block.
     615             :          */
     616           0 :         bits += 8 * md_block_size;
     617           0 :         memset(hmac_pad, 0, md_block_size);
     618           0 :         OPENSSL_assert(mac_secret_length <= sizeof(hmac_pad));
     619           0 :         memcpy(hmac_pad, mac_secret, mac_secret_length);
     620           0 :         for (i = 0; i < md_block_size; i++)
     621           0 :             hmac_pad[i] ^= 0x36;
     622             : 
     623           0 :         md_transform(md_state.c, hmac_pad);
     624             :     }
     625             : 
     626           0 :     if (length_is_big_endian) {
     627           0 :         memset(length_bytes, 0, md_length_size - 4);
     628           0 :         length_bytes[md_length_size - 4] = (unsigned char)(bits >> 24);
     629           0 :         length_bytes[md_length_size - 3] = (unsigned char)(bits >> 16);
     630           0 :         length_bytes[md_length_size - 2] = (unsigned char)(bits >> 8);
     631           0 :         length_bytes[md_length_size - 1] = (unsigned char)bits;
     632             :     } else {
     633           0 :         memset(length_bytes, 0, md_length_size);
     634           0 :         length_bytes[md_length_size - 5] = (unsigned char)(bits >> 24);
     635           0 :         length_bytes[md_length_size - 6] = (unsigned char)(bits >> 16);
     636           0 :         length_bytes[md_length_size - 7] = (unsigned char)(bits >> 8);
     637           0 :         length_bytes[md_length_size - 8] = (unsigned char)bits;
     638             :     }
     639             : 
     640           0 :     if (k > 0) {
     641           0 :         if (is_sslv3) {
     642             :             unsigned overhang;
     643             : 
     644             :             /*
     645             :              * The SSLv3 header is larger than a single block. overhang is
     646             :              * the number of bytes beyond a single block that the header
     647             :              * consumes: either 7 bytes (SHA1) or 11 bytes (MD5). There are no
     648             :              * ciphersuites in SSLv3 that are not SHA1 or MD5 based and
     649             :              * therefore we can be confident that the header_length will be
     650             :              * greater than |md_block_size|. However we add a sanity check just
     651             :              * in case
     652             :              */
     653           0 :             if (header_length <= md_block_size) {
     654             :                 /* Should never happen */
     655             :                 return;
     656             :             }
     657           0 :             overhang = header_length - md_block_size;
     658           0 :             md_transform(md_state.c, header);
     659           0 :             memcpy(first_block, header + md_block_size, overhang);
     660           0 :             memcpy(first_block + overhang, data, md_block_size - overhang);
     661           0 :             md_transform(md_state.c, first_block);
     662           0 :             for (i = 1; i < k / md_block_size - 1; i++)
     663           0 :                 md_transform(md_state.c, data + md_block_size * i - overhang);
     664             :         } else {
     665             :             /* k is a multiple of md_block_size. */
     666             :             memcpy(first_block, header, 13);
     667           0 :             memcpy(first_block + 13, data, md_block_size - 13);
     668           0 :             md_transform(md_state.c, first_block);
     669           0 :             for (i = 1; i < k / md_block_size; i++)
     670           0 :                 md_transform(md_state.c, data + md_block_size * i - 13);
     671             :         }
     672             :     }
     673             : 
     674             :     memset(mac_out, 0, sizeof(mac_out));
     675             : 
     676             :     /*
     677             :      * We now process the final hash blocks. For each block, we construct it
     678             :      * in constant time. If the |i==index_a| then we'll include the 0x80
     679             :      * bytes and zero pad etc. For each block we selectively copy it, in
     680             :      * constant time, to |mac_out|.
     681             :      */
     682           0 :     for (i = num_starting_blocks; i <= num_starting_blocks + variance_blocks;
     683           0 :          i++) {
     684             :         unsigned char block[MAX_HASH_BLOCK_SIZE];
     685             :         unsigned char is_block_a = constant_time_eq_8(i, index_a);
     686             :         unsigned char is_block_b = constant_time_eq_8(i, index_b);
     687           0 :         for (j = 0; j < md_block_size; j++) {
     688             :             unsigned char b = 0, is_past_c, is_past_cp1;
     689           0 :             if (k < header_length)
     690           0 :                 b = header[k];
     691           0 :             else if (k < data_plus_mac_plus_padding_size + header_length)
     692           0 :                 b = data[k - header_length];
     693           0 :             k++;
     694             : 
     695           0 :             is_past_c = is_block_a & constant_time_ge_8(j, c);
     696           0 :             is_past_cp1 = is_block_a & constant_time_ge_8(j, c + 1);
     697             :             /*
     698             :              * If this is the block containing the end of the application
     699             :              * data, and we are at the offset for the 0x80 value, then
     700             :              * overwrite b with 0x80.
     701             :              */
     702             :             b = constant_time_select_8(is_past_c, 0x80, b);
     703             :             /*
     704             :              * If this the the block containing the end of the application
     705             :              * data and we're past the 0x80 value then just write zero.
     706             :              */
     707           0 :             b = b & ~is_past_cp1;
     708             :             /*
     709             :              * If this is index_b (the final block), but not index_a (the end
     710             :              * of the data), then the 64-bit length didn't fit into index_a
     711             :              * and we're having to add an extra block of zeros.
     712             :              */
     713           0 :             b &= ~is_block_b | is_block_a;
     714             : 
     715             :             /*
     716             :              * The final bytes of one of the blocks contains the length.
     717             :              */
     718           0 :             if (j >= md_block_size - md_length_size) {
     719             :                 /* If this is index_b, write a length byte. */
     720             :                 b = constant_time_select_8(is_block_b,
     721           0 :                                            length_bytes[j -
     722           0 :                                                         (md_block_size -
     723             :                                                          md_length_size)], b);
     724             :             }
     725           0 :             block[j] = b;
     726             :         }
     727             : 
     728           0 :         md_transform(md_state.c, block);
     729           0 :         md_final_raw(md_state.c, block);
     730             :         /* If this is index_b, copy the hash value to |mac_out|. */
     731           0 :         for (j = 0; j < md_size; j++)
     732           0 :             mac_out[j] |= block[j] & is_block_b;
     733             :     }
     734             : 
     735           0 :     EVP_MD_CTX_init(&md_ctx);
     736           0 :     EVP_DigestInit_ex(&md_ctx, ctx->digest, NULL /* engine */ );
     737           0 :     if (is_sslv3) {
     738             :         /* We repurpose |hmac_pad| to contain the SSLv3 pad2 block. */
     739           0 :         memset(hmac_pad, 0x5c, sslv3_pad_length);
     740             : 
     741           0 :         EVP_DigestUpdate(&md_ctx, mac_secret, mac_secret_length);
     742           0 :         EVP_DigestUpdate(&md_ctx, hmac_pad, sslv3_pad_length);
     743           0 :         EVP_DigestUpdate(&md_ctx, mac_out, md_size);
     744             :     } else {
     745             :         /* Complete the HMAC in the standard manner. */
     746           0 :         for (i = 0; i < md_block_size; i++)
     747           0 :             hmac_pad[i] ^= 0x6a;
     748             : 
     749           0 :         EVP_DigestUpdate(&md_ctx, hmac_pad, md_block_size);
     750           0 :         EVP_DigestUpdate(&md_ctx, mac_out, md_size);
     751             :     }
     752           0 :     EVP_DigestFinal(&md_ctx, md_out, &md_out_size_u);
     753           0 :     if (md_out_size)
     754           0 :         *md_out_size = md_out_size_u;
     755           0 :     EVP_MD_CTX_cleanup(&md_ctx);
     756             : }
     757             : 
     758             : #ifdef OPENSSL_FIPS
     759             : 
     760             : /*
     761             :  * Due to the need to use EVP in FIPS mode we can't reimplement digests but
     762             :  * we can ensure the number of blocks processed is equal for all cases by
     763             :  * digesting additional data.
     764             :  */
     765             : 
     766             : void tls_fips_digest_extra(const EVP_CIPHER_CTX *cipher_ctx,
     767             :                            EVP_MD_CTX *mac_ctx, const unsigned char *data,
     768             :                            size_t data_len, size_t orig_len)
     769             : {
     770             :     size_t block_size, digest_pad, blocks_data, blocks_orig;
     771             :     if (EVP_CIPHER_CTX_mode(cipher_ctx) != EVP_CIPH_CBC_MODE)
     772             :         return;
     773             :     block_size = EVP_MD_CTX_block_size(mac_ctx);
     774             :     /*-
     775             :      * We are in FIPS mode if we get this far so we know we have only SHA*
     776             :      * digests and TLS to deal with.
     777             :      * Minimum digest padding length is 17 for SHA384/SHA512 and 9
     778             :      * otherwise.
     779             :      * Additional header is 13 bytes. To get the number of digest blocks
     780             :      * processed round up the amount of data plus padding to the nearest
     781             :      * block length. Block length is 128 for SHA384/SHA512 and 64 otherwise.
     782             :      * So we have:
     783             :      * blocks = (payload_len + digest_pad + 13 + block_size - 1)/block_size
     784             :      * equivalently:
     785             :      * blocks = (payload_len + digest_pad + 12)/block_size + 1
     786             :      * HMAC adds a constant overhead.
     787             :      * We're ultimately only interested in differences so this becomes
     788             :      * blocks = (payload_len + 29)/128
     789             :      * for SHA384/SHA512 and
     790             :      * blocks = (payload_len + 21)/64
     791             :      * otherwise.
     792             :      */
     793             :     digest_pad = block_size == 64 ? 21 : 29;
     794             :     blocks_orig = (orig_len + digest_pad) / block_size;
     795             :     blocks_data = (data_len + digest_pad) / block_size;
     796             :     /*
     797             :      * MAC enough blocks to make up the difference between the original and
     798             :      * actual lengths plus one extra block to ensure this is never a no op.
     799             :      * The "data" pointer should always have enough space to perform this
     800             :      * operation as it is large enough for a maximum length TLS buffer.
     801             :      */
     802             :     EVP_DigestSignUpdate(mac_ctx, data,
     803             :                          (blocks_orig - blocks_data + 1) * block_size);
     804             : }
     805             : #endif

Generated by: LCOV version 1.10