LCOV - code coverage report
Current view: top level - third_party/openssl/crypto/ec - ec2_mult.c (source / functions) Hit Total Coverage
Test: tmp.zDYK9MVh93 Lines: 0 148 0.0 %
Date: 2015-10-10 Functions: 0 7 0.0 %

          Line data    Source code
       1             : /* crypto/ec/ec2_mult.c */
       2             : /* ====================================================================
       3             :  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
       4             :  *
       5             :  * The Elliptic Curve Public-Key Crypto Library (ECC Code) included
       6             :  * herein is developed by SUN MICROSYSTEMS, INC., and is contributed
       7             :  * to the OpenSSL project.
       8             :  *
       9             :  * The ECC Code is licensed pursuant to the OpenSSL open source
      10             :  * license provided below.
      11             :  *
      12             :  * The software is originally written by Sheueling Chang Shantz and
      13             :  * Douglas Stebila of Sun Microsystems Laboratories.
      14             :  *
      15             :  */
      16             : /* ====================================================================
      17             :  * Copyright (c) 1998-2003 The OpenSSL Project.  All rights reserved.
      18             :  *
      19             :  * Redistribution and use in source and binary forms, with or without
      20             :  * modification, are permitted provided that the following conditions
      21             :  * are met:
      22             :  *
      23             :  * 1. Redistributions of source code must retain the above copyright
      24             :  *    notice, this list of conditions and the following disclaimer.
      25             :  *
      26             :  * 2. Redistributions in binary form must reproduce the above copyright
      27             :  *    notice, this list of conditions and the following disclaimer in
      28             :  *    the documentation and/or other materials provided with the
      29             :  *    distribution.
      30             :  *
      31             :  * 3. All advertising materials mentioning features or use of this
      32             :  *    software must display the following acknowledgment:
      33             :  *    "This product includes software developed by the OpenSSL Project
      34             :  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
      35             :  *
      36             :  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
      37             :  *    endorse or promote products derived from this software without
      38             :  *    prior written permission. For written permission, please contact
      39             :  *    openssl-core@openssl.org.
      40             :  *
      41             :  * 5. Products derived from this software may not be called "OpenSSL"
      42             :  *    nor may "OpenSSL" appear in their names without prior written
      43             :  *    permission of the OpenSSL Project.
      44             :  *
      45             :  * 6. Redistributions of any form whatsoever must retain the following
      46             :  *    acknowledgment:
      47             :  *    "This product includes software developed by the OpenSSL Project
      48             :  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
      49             :  *
      50             :  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
      51             :  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      52             :  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      53             :  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
      54             :  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      55             :  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
      56             :  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
      57             :  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      58             :  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
      59             :  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
      60             :  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
      61             :  * OF THE POSSIBILITY OF SUCH DAMAGE.
      62             :  * ====================================================================
      63             :  *
      64             :  * This product includes cryptographic software written by Eric Young
      65             :  * (eay@cryptsoft.com).  This product includes software written by Tim
      66             :  * Hudson (tjh@cryptsoft.com).
      67             :  *
      68             :  */
      69             : 
      70             : #include <openssl/err.h>
      71             : 
      72             : #include "ec_lcl.h"
      73             : 
      74             : #ifndef OPENSSL_NO_EC2M
      75             : 
      76             : /*-
      77             :  * Compute the x-coordinate x/z for the point 2*(x/z) in Montgomery projective
      78             :  * coordinates.
      79             :  * Uses algorithm Mdouble in appendix of
      80             :  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
      81             :  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
      82             :  * modified to not require precomputation of c=b^{2^{m-1}}.
      83             :  */
      84           0 : static int gf2m_Mdouble(const EC_GROUP *group, BIGNUM *x, BIGNUM *z,
      85             :                         BN_CTX *ctx)
      86             : {
      87             :     BIGNUM *t1;
      88             :     int ret = 0;
      89             : 
      90             :     /* Since Mdouble is static we can guarantee that ctx != NULL. */
      91           0 :     BN_CTX_start(ctx);
      92           0 :     t1 = BN_CTX_get(ctx);
      93           0 :     if (t1 == NULL)
      94             :         goto err;
      95             : 
      96           0 :     if (!group->meth->field_sqr(group, x, x, ctx))
      97             :         goto err;
      98           0 :     if (!group->meth->field_sqr(group, t1, z, ctx))
      99             :         goto err;
     100           0 :     if (!group->meth->field_mul(group, z, x, t1, ctx))
     101             :         goto err;
     102           0 :     if (!group->meth->field_sqr(group, x, x, ctx))
     103             :         goto err;
     104           0 :     if (!group->meth->field_sqr(group, t1, t1, ctx))
     105             :         goto err;
     106           0 :     if (!group->meth->field_mul(group, t1, &group->b, t1, ctx))
     107             :         goto err;
     108           0 :     if (!BN_GF2m_add(x, x, t1))
     109             :         goto err;
     110             : 
     111             :     ret = 1;
     112             : 
     113             :  err:
     114           0 :     BN_CTX_end(ctx);
     115           0 :     return ret;
     116             : }
     117             : 
     118             : /*-
     119             :  * Compute the x-coordinate x1/z1 for the point (x1/z1)+(x2/x2) in Montgomery
     120             :  * projective coordinates.
     121             :  * Uses algorithm Madd in appendix of
     122             :  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
     123             :  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
     124             :  */
     125           0 : static int gf2m_Madd(const EC_GROUP *group, const BIGNUM *x, BIGNUM *x1,
     126             :                      BIGNUM *z1, const BIGNUM *x2, const BIGNUM *z2,
     127             :                      BN_CTX *ctx)
     128             : {
     129             :     BIGNUM *t1, *t2;
     130             :     int ret = 0;
     131             : 
     132             :     /* Since Madd is static we can guarantee that ctx != NULL. */
     133           0 :     BN_CTX_start(ctx);
     134           0 :     t1 = BN_CTX_get(ctx);
     135           0 :     t2 = BN_CTX_get(ctx);
     136           0 :     if (t2 == NULL)
     137             :         goto err;
     138             : 
     139           0 :     if (!BN_copy(t1, x))
     140             :         goto err;
     141           0 :     if (!group->meth->field_mul(group, x1, x1, z2, ctx))
     142             :         goto err;
     143           0 :     if (!group->meth->field_mul(group, z1, z1, x2, ctx))
     144             :         goto err;
     145           0 :     if (!group->meth->field_mul(group, t2, x1, z1, ctx))
     146             :         goto err;
     147           0 :     if (!BN_GF2m_add(z1, z1, x1))
     148             :         goto err;
     149           0 :     if (!group->meth->field_sqr(group, z1, z1, ctx))
     150             :         goto err;
     151           0 :     if (!group->meth->field_mul(group, x1, z1, t1, ctx))
     152             :         goto err;
     153           0 :     if (!BN_GF2m_add(x1, x1, t2))
     154             :         goto err;
     155             : 
     156             :     ret = 1;
     157             : 
     158             :  err:
     159           0 :     BN_CTX_end(ctx);
     160           0 :     return ret;
     161             : }
     162             : 
     163             : /*-
     164             :  * Compute the x, y affine coordinates from the point (x1, z1) (x2, z2)
     165             :  * using Montgomery point multiplication algorithm Mxy() in appendix of
     166             :  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
     167             :  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
     168             :  * Returns:
     169             :  *     0 on error
     170             :  *     1 if return value should be the point at infinity
     171             :  *     2 otherwise
     172             :  */
     173           0 : static int gf2m_Mxy(const EC_GROUP *group, const BIGNUM *x, const BIGNUM *y,
     174             :                     BIGNUM *x1, BIGNUM *z1, BIGNUM *x2, BIGNUM *z2,
     175             :                     BN_CTX *ctx)
     176             : {
     177             :     BIGNUM *t3, *t4, *t5;
     178             :     int ret = 0;
     179             : 
     180           0 :     if (BN_is_zero(z1)) {
     181           0 :         BN_zero(x2);
     182           0 :         BN_zero(z2);
     183           0 :         return 1;
     184             :     }
     185             : 
     186           0 :     if (BN_is_zero(z2)) {
     187           0 :         if (!BN_copy(x2, x))
     188             :             return 0;
     189           0 :         if (!BN_GF2m_add(z2, x, y))
     190             :             return 0;
     191           0 :         return 2;
     192             :     }
     193             : 
     194             :     /* Since Mxy is static we can guarantee that ctx != NULL. */
     195           0 :     BN_CTX_start(ctx);
     196           0 :     t3 = BN_CTX_get(ctx);
     197           0 :     t4 = BN_CTX_get(ctx);
     198           0 :     t5 = BN_CTX_get(ctx);
     199           0 :     if (t5 == NULL)
     200             :         goto err;
     201             : 
     202           0 :     if (!BN_one(t5))
     203             :         goto err;
     204             : 
     205           0 :     if (!group->meth->field_mul(group, t3, z1, z2, ctx))
     206             :         goto err;
     207             : 
     208           0 :     if (!group->meth->field_mul(group, z1, z1, x, ctx))
     209             :         goto err;
     210           0 :     if (!BN_GF2m_add(z1, z1, x1))
     211             :         goto err;
     212           0 :     if (!group->meth->field_mul(group, z2, z2, x, ctx))
     213             :         goto err;
     214           0 :     if (!group->meth->field_mul(group, x1, z2, x1, ctx))
     215             :         goto err;
     216           0 :     if (!BN_GF2m_add(z2, z2, x2))
     217             :         goto err;
     218             : 
     219           0 :     if (!group->meth->field_mul(group, z2, z2, z1, ctx))
     220             :         goto err;
     221           0 :     if (!group->meth->field_sqr(group, t4, x, ctx))
     222             :         goto err;
     223           0 :     if (!BN_GF2m_add(t4, t4, y))
     224             :         goto err;
     225           0 :     if (!group->meth->field_mul(group, t4, t4, t3, ctx))
     226             :         goto err;
     227           0 :     if (!BN_GF2m_add(t4, t4, z2))
     228             :         goto err;
     229             : 
     230           0 :     if (!group->meth->field_mul(group, t3, t3, x, ctx))
     231             :         goto err;
     232           0 :     if (!group->meth->field_div(group, t3, t5, t3, ctx))
     233             :         goto err;
     234           0 :     if (!group->meth->field_mul(group, t4, t3, t4, ctx))
     235             :         goto err;
     236           0 :     if (!group->meth->field_mul(group, x2, x1, t3, ctx))
     237             :         goto err;
     238           0 :     if (!BN_GF2m_add(z2, x2, x))
     239             :         goto err;
     240             : 
     241           0 :     if (!group->meth->field_mul(group, z2, z2, t4, ctx))
     242             :         goto err;
     243           0 :     if (!BN_GF2m_add(z2, z2, y))
     244             :         goto err;
     245             : 
     246             :     ret = 2;
     247             : 
     248             :  err:
     249           0 :     BN_CTX_end(ctx);
     250           0 :     return ret;
     251             : }
     252             : 
     253             : /*-
     254             :  * Computes scalar*point and stores the result in r.
     255             :  * point can not equal r.
     256             :  * Uses a modified algorithm 2P of
     257             :  *     Lopez, J. and Dahab, R.  "Fast multiplication on elliptic curves over
     258             :  *     GF(2^m) without precomputation" (CHES '99, LNCS 1717).
     259             :  *
     260             :  * To protect against side-channel attack the function uses constant time swap,
     261             :  * avoiding conditional branches.
     262             :  */
     263           0 : static int ec_GF2m_montgomery_point_multiply(const EC_GROUP *group,
     264             :                                              EC_POINT *r,
     265             :                                              const BIGNUM *scalar,
     266             :                                              const EC_POINT *point,
     267             :                                              BN_CTX *ctx)
     268             : {
     269             :     BIGNUM *x1, *x2, *z1, *z2;
     270             :     int ret = 0, i;
     271             :     BN_ULONG mask, word;
     272             : 
     273           0 :     if (r == point) {
     274           0 :         ECerr(EC_F_EC_GF2M_MONTGOMERY_POINT_MULTIPLY, EC_R_INVALID_ARGUMENT);
     275           0 :         return 0;
     276             :     }
     277             : 
     278             :     /* if result should be point at infinity */
     279           0 :     if ((scalar == NULL) || BN_is_zero(scalar) || (point == NULL) ||
     280           0 :         EC_POINT_is_at_infinity(group, point)) {
     281           0 :         return EC_POINT_set_to_infinity(group, r);
     282             :     }
     283             : 
     284             :     /* only support affine coordinates */
     285           0 :     if (!point->Z_is_one)
     286             :         return 0;
     287             : 
     288             :     /*
     289             :      * Since point_multiply is static we can guarantee that ctx != NULL.
     290             :      */
     291           0 :     BN_CTX_start(ctx);
     292           0 :     x1 = BN_CTX_get(ctx);
     293           0 :     z1 = BN_CTX_get(ctx);
     294           0 :     if (z1 == NULL)
     295             :         goto err;
     296             : 
     297           0 :     x2 = &r->X;
     298           0 :     z2 = &r->Y;
     299             : 
     300           0 :     bn_wexpand(x1, group->field.top);
     301           0 :     bn_wexpand(z1, group->field.top);
     302           0 :     bn_wexpand(x2, group->field.top);
     303           0 :     bn_wexpand(z2, group->field.top);
     304             : 
     305           0 :     if (!BN_GF2m_mod_arr(x1, &point->X, group->poly))
     306             :         goto err;               /* x1 = x */
     307           0 :     if (!BN_one(z1))
     308             :         goto err;               /* z1 = 1 */
     309           0 :     if (!group->meth->field_sqr(group, z2, x1, ctx))
     310             :         goto err;               /* z2 = x1^2 = x^2 */
     311           0 :     if (!group->meth->field_sqr(group, x2, z2, ctx))
     312             :         goto err;
     313           0 :     if (!BN_GF2m_add(x2, x2, &group->b))
     314             :         goto err;               /* x2 = x^4 + b */
     315             : 
     316             :     /* find top most bit and go one past it */
     317           0 :     i = scalar->top - 1;
     318             :     mask = BN_TBIT;
     319           0 :     word = scalar->d[i];
     320           0 :     while (!(word & mask))
     321           0 :         mask >>= 1;
     322           0 :     mask >>= 1;
     323             :     /* if top most bit was at word break, go to next word */
     324           0 :     if (!mask) {
     325           0 :         i--;
     326             :         mask = BN_TBIT;
     327             :     }
     328             : 
     329           0 :     for (; i >= 0; i--) {
     330           0 :         word = scalar->d[i];
     331           0 :         while (mask) {
     332           0 :             BN_consttime_swap(word & mask, x1, x2, group->field.top);
     333           0 :             BN_consttime_swap(word & mask, z1, z2, group->field.top);
     334           0 :             if (!gf2m_Madd(group, &point->X, x2, z2, x1, z1, ctx))
     335             :                 goto err;
     336           0 :             if (!gf2m_Mdouble(group, x1, z1, ctx))
     337             :                 goto err;
     338           0 :             BN_consttime_swap(word & mask, x1, x2, group->field.top);
     339           0 :             BN_consttime_swap(word & mask, z1, z2, group->field.top);
     340           0 :             mask >>= 1;
     341             :         }
     342             :         mask = BN_TBIT;
     343             :     }
     344             : 
     345             :     /* convert out of "projective" coordinates */
     346           0 :     i = gf2m_Mxy(group, &point->X, &point->Y, x1, z1, x2, z2, ctx);
     347           0 :     if (i == 0)
     348             :         goto err;
     349           0 :     else if (i == 1) {
     350           0 :         if (!EC_POINT_set_to_infinity(group, r))
     351             :             goto err;
     352             :     } else {
     353           0 :         if (!BN_one(&r->Z))
     354             :             goto err;
     355           0 :         r->Z_is_one = 1;
     356             :     }
     357             : 
     358             :     /* GF(2^m) field elements should always have BIGNUM::neg = 0 */
     359           0 :     BN_set_negative(&r->X, 0);
     360           0 :     BN_set_negative(&r->Y, 0);
     361             : 
     362             :     ret = 1;
     363             : 
     364             :  err:
     365           0 :     BN_CTX_end(ctx);
     366           0 :     return ret;
     367             : }
     368             : 
     369             : /*-
     370             :  * Computes the sum
     371             :  *     scalar*group->generator + scalars[0]*points[0] + ... + scalars[num-1]*points[num-1]
     372             :  * gracefully ignoring NULL scalar values.
     373             :  */
     374           0 : int ec_GF2m_simple_mul(const EC_GROUP *group, EC_POINT *r,
     375             :                        const BIGNUM *scalar, size_t num,
     376             :                        const EC_POINT *points[], const BIGNUM *scalars[],
     377             :                        BN_CTX *ctx)
     378             : {
     379             :     BN_CTX *new_ctx = NULL;
     380             :     int ret = 0;
     381             :     size_t i;
     382             :     EC_POINT *p = NULL;
     383             :     EC_POINT *acc = NULL;
     384             : 
     385           0 :     if (ctx == NULL) {
     386           0 :         ctx = new_ctx = BN_CTX_new();
     387           0 :         if (ctx == NULL)
     388             :             return 0;
     389             :     }
     390             : 
     391             :     /*
     392             :      * This implementation is more efficient than the wNAF implementation for
     393             :      * 2 or fewer points.  Use the ec_wNAF_mul implementation for 3 or more
     394             :      * points, or if we can perform a fast multiplication based on
     395             :      * precomputation.
     396             :      */
     397           0 :     if ((scalar && (num > 1)) || (num > 2)
     398           0 :         || (num == 0 && EC_GROUP_have_precompute_mult(group))) {
     399           0 :         ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx);
     400           0 :         goto err;
     401             :     }
     402             : 
     403           0 :     if ((p = EC_POINT_new(group)) == NULL)
     404             :         goto err;
     405           0 :     if ((acc = EC_POINT_new(group)) == NULL)
     406             :         goto err;
     407             : 
     408           0 :     if (!EC_POINT_set_to_infinity(group, acc))
     409             :         goto err;
     410             : 
     411           0 :     if (scalar) {
     412           0 :         if (!ec_GF2m_montgomery_point_multiply
     413           0 :             (group, p, scalar, group->generator, ctx))
     414             :             goto err;
     415           0 :         if (BN_is_negative(scalar))
     416           0 :             if (!group->meth->invert(group, p, ctx))
     417             :                 goto err;
     418           0 :         if (!group->meth->add(group, acc, acc, p, ctx))
     419             :             goto err;
     420             :     }
     421             : 
     422           0 :     for (i = 0; i < num; i++) {
     423           0 :         if (!ec_GF2m_montgomery_point_multiply
     424           0 :             (group, p, scalars[i], points[i], ctx))
     425             :             goto err;
     426           0 :         if (BN_is_negative(scalars[i]))
     427           0 :             if (!group->meth->invert(group, p, ctx))
     428             :                 goto err;
     429           0 :         if (!group->meth->add(group, acc, acc, p, ctx))
     430             :             goto err;
     431             :     }
     432             : 
     433           0 :     if (!EC_POINT_copy(r, acc))
     434             :         goto err;
     435             : 
     436             :     ret = 1;
     437             : 
     438             :  err:
     439           0 :     if (p)
     440           0 :         EC_POINT_free(p);
     441           0 :     if (acc)
     442           0 :         EC_POINT_free(acc);
     443           0 :     if (new_ctx != NULL)
     444           0 :         BN_CTX_free(new_ctx);
     445           0 :     return ret;
     446             : }
     447             : 
     448             : /*
     449             :  * Precomputation for point multiplication: fall back to wNAF methods because
     450             :  * ec_GF2m_simple_mul() uses ec_wNAF_mul() if appropriate
     451             :  */
     452             : 
     453           0 : int ec_GF2m_precompute_mult(EC_GROUP *group, BN_CTX *ctx)
     454             : {
     455           0 :     return ec_wNAF_precompute_mult(group, ctx);
     456             : }
     457             : 
     458           0 : int ec_GF2m_have_precompute_mult(const EC_GROUP *group)
     459             : {
     460           0 :     return ec_wNAF_have_precompute_mult(group);
     461             : }
     462             : 
     463             : #endif

Generated by: LCOV version 1.10