LCOV - code coverage report
Current view: top level - third_party/openssl/crypto/bn - bn_sqrt.c (source / functions) Hit Total Coverage
Test: tmp.zDYK9MVh93 Lines: 0 108 0.0 %
Date: 2015-10-10 Functions: 0 1 0.0 %

          Line data    Source code
       1             : /* crypto/bn/bn_sqrt.c */
       2             : /*
       3             :  * Written by Lenka Fibikova <fibikova@exp-math.uni-essen.de> and Bodo
       4             :  * Moeller for the OpenSSL project.
       5             :  */
       6             : /* ====================================================================
       7             :  * Copyright (c) 1998-2000 The OpenSSL Project.  All rights reserved.
       8             :  *
       9             :  * Redistribution and use in source and binary forms, with or without
      10             :  * modification, are permitted provided that the following conditions
      11             :  * are met:
      12             :  *
      13             :  * 1. Redistributions of source code must retain the above copyright
      14             :  *    notice, this list of conditions and the following disclaimer.
      15             :  *
      16             :  * 2. Redistributions in binary form must reproduce the above copyright
      17             :  *    notice, this list of conditions and the following disclaimer in
      18             :  *    the documentation and/or other materials provided with the
      19             :  *    distribution.
      20             :  *
      21             :  * 3. All advertising materials mentioning features or use of this
      22             :  *    software must display the following acknowledgment:
      23             :  *    "This product includes software developed by the OpenSSL Project
      24             :  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
      25             :  *
      26             :  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
      27             :  *    endorse or promote products derived from this software without
      28             :  *    prior written permission. For written permission, please contact
      29             :  *    openssl-core@openssl.org.
      30             :  *
      31             :  * 5. Products derived from this software may not be called "OpenSSL"
      32             :  *    nor may "OpenSSL" appear in their names without prior written
      33             :  *    permission of the OpenSSL Project.
      34             :  *
      35             :  * 6. Redistributions of any form whatsoever must retain the following
      36             :  *    acknowledgment:
      37             :  *    "This product includes software developed by the OpenSSL Project
      38             :  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
      39             :  *
      40             :  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
      41             :  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
      42             :  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
      43             :  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
      44             :  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
      45             :  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
      46             :  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
      47             :  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
      48             :  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
      49             :  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
      50             :  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
      51             :  * OF THE POSSIBILITY OF SUCH DAMAGE.
      52             :  * ====================================================================
      53             :  *
      54             :  * This product includes cryptographic software written by Eric Young
      55             :  * (eay@cryptsoft.com).  This product includes software written by Tim
      56             :  * Hudson (tjh@cryptsoft.com).
      57             :  *
      58             :  */
      59             : 
      60             : #include "cryptlib.h"
      61             : #include "bn_lcl.h"
      62             : 
      63           0 : BIGNUM *BN_mod_sqrt(BIGNUM *in, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
      64             : /*
      65             :  * Returns 'ret' such that ret^2 == a (mod p), using the Tonelli/Shanks
      66             :  * algorithm (cf. Henri Cohen, "A Course in Algebraic Computational Number
      67             :  * Theory", algorithm 1.5.1). 'p' must be prime!
      68             :  */
      69             : {
      70             :     BIGNUM *ret = in;
      71             :     int err = 1;
      72             :     int r;
      73             :     BIGNUM *A, *b, *q, *t, *x, *y;
      74             :     int e, i, j;
      75             : 
      76           0 :     if (!BN_is_odd(p) || BN_abs_is_word(p, 1)) {
      77           0 :         if (BN_abs_is_word(p, 2)) {
      78           0 :             if (ret == NULL)
      79           0 :                 ret = BN_new();
      80           0 :             if (ret == NULL)
      81             :                 goto end;
      82           0 :             if (!BN_set_word(ret, BN_is_bit_set(a, 0))) {
      83           0 :                 if (ret != in)
      84           0 :                     BN_free(ret);
      85             :                 return NULL;
      86             :             }
      87             :             bn_check_top(ret);
      88             :             return ret;
      89             :         }
      90             : 
      91           0 :         BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
      92           0 :         return (NULL);
      93             :     }
      94             : 
      95           0 :     if (BN_is_zero(a) || BN_is_one(a)) {
      96           0 :         if (ret == NULL)
      97           0 :             ret = BN_new();
      98           0 :         if (ret == NULL)
      99             :             goto end;
     100           0 :         if (!BN_set_word(ret, BN_is_one(a))) {
     101           0 :             if (ret != in)
     102           0 :                 BN_free(ret);
     103             :             return NULL;
     104             :         }
     105             :         bn_check_top(ret);
     106             :         return ret;
     107             :     }
     108             : 
     109           0 :     BN_CTX_start(ctx);
     110           0 :     A = BN_CTX_get(ctx);
     111           0 :     b = BN_CTX_get(ctx);
     112           0 :     q = BN_CTX_get(ctx);
     113           0 :     t = BN_CTX_get(ctx);
     114           0 :     x = BN_CTX_get(ctx);
     115           0 :     y = BN_CTX_get(ctx);
     116           0 :     if (y == NULL)
     117             :         goto end;
     118             : 
     119           0 :     if (ret == NULL)
     120           0 :         ret = BN_new();
     121           0 :     if (ret == NULL)
     122             :         goto end;
     123             : 
     124             :     /* A = a mod p */
     125           0 :     if (!BN_nnmod(A, a, p, ctx))
     126             :         goto end;
     127             : 
     128             :     /* now write  |p| - 1  as  2^e*q  where  q  is odd */
     129             :     e = 1;
     130           0 :     while (!BN_is_bit_set(p, e))
     131           0 :         e++;
     132             :     /* we'll set  q  later (if needed) */
     133             : 
     134           0 :     if (e == 1) {
     135             :         /*-
     136             :          * The easy case:  (|p|-1)/2  is odd, so 2 has an inverse
     137             :          * modulo  (|p|-1)/2,  and square roots can be computed
     138             :          * directly by modular exponentiation.
     139             :          * We have
     140             :          *     2 * (|p|+1)/4 == 1   (mod (|p|-1)/2),
     141             :          * so we can use exponent  (|p|+1)/4,  i.e.  (|p|-3)/4 + 1.
     142             :          */
     143           0 :         if (!BN_rshift(q, p, 2))
     144             :             goto end;
     145           0 :         q->neg = 0;
     146           0 :         if (!BN_add_word(q, 1))
     147             :             goto end;
     148           0 :         if (!BN_mod_exp(ret, A, q, p, ctx))
     149             :             goto end;
     150             :         err = 0;
     151             :         goto vrfy;
     152             :     }
     153             : 
     154           0 :     if (e == 2) {
     155             :         /*-
     156             :          * |p| == 5  (mod 8)
     157             :          *
     158             :          * In this case  2  is always a non-square since
     159             :          * Legendre(2,p) = (-1)^((p^2-1)/8)  for any odd prime.
     160             :          * So if  a  really is a square, then  2*a  is a non-square.
     161             :          * Thus for
     162             :          *      b := (2*a)^((|p|-5)/8),
     163             :          *      i := (2*a)*b^2
     164             :          * we have
     165             :          *     i^2 = (2*a)^((1 + (|p|-5)/4)*2)
     166             :          *         = (2*a)^((p-1)/2)
     167             :          *         = -1;
     168             :          * so if we set
     169             :          *      x := a*b*(i-1),
     170             :          * then
     171             :          *     x^2 = a^2 * b^2 * (i^2 - 2*i + 1)
     172             :          *         = a^2 * b^2 * (-2*i)
     173             :          *         = a*(-i)*(2*a*b^2)
     174             :          *         = a*(-i)*i
     175             :          *         = a.
     176             :          *
     177             :          * (This is due to A.O.L. Atkin,
     178             :          * <URL: http://listserv.nodak.edu/scripts/wa.exe?A2=ind9211&L=nmbrthry&O=T&P=562>,
     179             :          * November 1992.)
     180             :          */
     181             : 
     182             :         /* t := 2*a */
     183           0 :         if (!BN_mod_lshift1_quick(t, A, p))
     184             :             goto end;
     185             : 
     186             :         /* b := (2*a)^((|p|-5)/8) */
     187           0 :         if (!BN_rshift(q, p, 3))
     188             :             goto end;
     189           0 :         q->neg = 0;
     190           0 :         if (!BN_mod_exp(b, t, q, p, ctx))
     191             :             goto end;
     192             : 
     193             :         /* y := b^2 */
     194           0 :         if (!BN_mod_sqr(y, b, p, ctx))
     195             :             goto end;
     196             : 
     197             :         /* t := (2*a)*b^2 - 1 */
     198           0 :         if (!BN_mod_mul(t, t, y, p, ctx))
     199             :             goto end;
     200           0 :         if (!BN_sub_word(t, 1))
     201             :             goto end;
     202             : 
     203             :         /* x = a*b*t */
     204           0 :         if (!BN_mod_mul(x, A, b, p, ctx))
     205             :             goto end;
     206           0 :         if (!BN_mod_mul(x, x, t, p, ctx))
     207             :             goto end;
     208             : 
     209           0 :         if (!BN_copy(ret, x))
     210             :             goto end;
     211             :         err = 0;
     212             :         goto vrfy;
     213             :     }
     214             : 
     215             :     /*
     216             :      * e > 2, so we really have to use the Tonelli/Shanks algorithm. First,
     217             :      * find some y that is not a square.
     218             :      */
     219           0 :     if (!BN_copy(q, p))
     220             :         goto end;               /* use 'q' as temp */
     221           0 :     q->neg = 0;
     222             :     i = 2;
     223             :     do {
     224             :         /*
     225             :          * For efficiency, try small numbers first; if this fails, try random
     226             :          * numbers.
     227             :          */
     228           0 :         if (i < 22) {
     229           0 :             if (!BN_set_word(y, i))
     230             :                 goto end;
     231             :         } else {
     232           0 :             if (!BN_pseudo_rand(y, BN_num_bits(p), 0, 0))
     233             :                 goto end;
     234           0 :             if (BN_ucmp(y, p) >= 0) {
     235           0 :                 if (!(p->neg ? BN_add : BN_sub) (y, y, p))
     236             :                     goto end;
     237             :             }
     238             :             /* now 0 <= y < |p| */
     239           0 :             if (BN_is_zero(y))
     240           0 :                 if (!BN_set_word(y, i))
     241             :                     goto end;
     242             :         }
     243             : 
     244           0 :         r = BN_kronecker(y, q, ctx); /* here 'q' is |p| */
     245           0 :         if (r < -1)
     246             :             goto end;
     247           0 :         if (r == 0) {
     248             :             /* m divides p */
     249           0 :             BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
     250           0 :             goto end;
     251             :         }
     252             :     }
     253           0 :     while (r == 1 && ++i < 82);
     254             : 
     255           0 :     if (r != -1) {
     256             :         /*
     257             :          * Many rounds and still no non-square -- this is more likely a bug
     258             :          * than just bad luck. Even if p is not prime, we should have found
     259             :          * some y such that r == -1.
     260             :          */
     261           0 :         BNerr(BN_F_BN_MOD_SQRT, BN_R_TOO_MANY_ITERATIONS);
     262           0 :         goto end;
     263             :     }
     264             : 
     265             :     /* Here's our actual 'q': */
     266           0 :     if (!BN_rshift(q, q, e))
     267             :         goto end;
     268             : 
     269             :     /*
     270             :      * Now that we have some non-square, we can find an element of order 2^e
     271             :      * by computing its q'th power.
     272             :      */
     273           0 :     if (!BN_mod_exp(y, y, q, p, ctx))
     274             :         goto end;
     275           0 :     if (BN_is_one(y)) {
     276           0 :         BNerr(BN_F_BN_MOD_SQRT, BN_R_P_IS_NOT_PRIME);
     277           0 :         goto end;
     278             :     }
     279             : 
     280             :     /*-
     281             :      * Now we know that (if  p  is indeed prime) there is an integer
     282             :      * k,  0 <= k < 2^e,  such that
     283             :      *
     284             :      *      a^q * y^k == 1   (mod p).
     285             :      *
     286             :      * As  a^q  is a square and  y  is not,  k  must be even.
     287             :      * q+1  is even, too, so there is an element
     288             :      *
     289             :      *     X := a^((q+1)/2) * y^(k/2),
     290             :      *
     291             :      * and it satisfies
     292             :      *
     293             :      *     X^2 = a^q * a     * y^k
     294             :      *         = a,
     295             :      *
     296             :      * so it is the square root that we are looking for.
     297             :      */
     298             : 
     299             :     /* t := (q-1)/2  (note that  q  is odd) */
     300           0 :     if (!BN_rshift1(t, q))
     301             :         goto end;
     302             : 
     303             :     /* x := a^((q-1)/2) */
     304           0 :     if (BN_is_zero(t)) {        /* special case: p = 2^e + 1 */
     305           0 :         if (!BN_nnmod(t, A, p, ctx))
     306             :             goto end;
     307           0 :         if (BN_is_zero(t)) {
     308             :             /* special case: a == 0  (mod p) */
     309           0 :             BN_zero(ret);
     310             :             err = 0;
     311           0 :             goto end;
     312           0 :         } else if (!BN_one(x))
     313             :             goto end;
     314             :     } else {
     315           0 :         if (!BN_mod_exp(x, A, t, p, ctx))
     316             :             goto end;
     317           0 :         if (BN_is_zero(x)) {
     318             :             /* special case: a == 0  (mod p) */
     319           0 :             BN_zero(ret);
     320             :             err = 0;
     321           0 :             goto end;
     322             :         }
     323             :     }
     324             : 
     325             :     /* b := a*x^2  (= a^q) */
     326           0 :     if (!BN_mod_sqr(b, x, p, ctx))
     327             :         goto end;
     328           0 :     if (!BN_mod_mul(b, b, A, p, ctx))
     329             :         goto end;
     330             : 
     331             :     /* x := a*x    (= a^((q+1)/2)) */
     332           0 :     if (!BN_mod_mul(x, x, A, p, ctx))
     333             :         goto end;
     334             : 
     335             :     while (1) {
     336             :         /*-
     337             :          * Now  b  is  a^q * y^k  for some even  k  (0 <= k < 2^E
     338             :          * where  E  refers to the original value of  e,  which we
     339             :          * don't keep in a variable),  and  x  is  a^((q+1)/2) * y^(k/2).
     340             :          *
     341             :          * We have  a*b = x^2,
     342             :          *    y^2^(e-1) = -1,
     343             :          *    b^2^(e-1) = 1.
     344             :          */
     345             : 
     346           0 :         if (BN_is_one(b)) {
     347           0 :             if (!BN_copy(ret, x))
     348             :                 goto end;
     349             :             err = 0;
     350             :             goto vrfy;
     351             :         }
     352             : 
     353             :         /* find smallest  i  such that  b^(2^i) = 1 */
     354             :         i = 1;
     355           0 :         if (!BN_mod_sqr(t, b, p, ctx))
     356             :             goto end;
     357           0 :         while (!BN_is_one(t)) {
     358           0 :             i++;
     359           0 :             if (i == e) {
     360           0 :                 BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
     361           0 :                 goto end;
     362             :             }
     363           0 :             if (!BN_mod_mul(t, t, t, p, ctx))
     364             :                 goto end;
     365             :         }
     366             : 
     367             :         /* t := y^2^(e - i - 1) */
     368           0 :         if (!BN_copy(t, y))
     369             :             goto end;
     370           0 :         for (j = e - i - 1; j > 0; j--) {
     371           0 :             if (!BN_mod_sqr(t, t, p, ctx))
     372             :                 goto end;
     373             :         }
     374           0 :         if (!BN_mod_mul(y, t, t, p, ctx))
     375             :             goto end;
     376           0 :         if (!BN_mod_mul(x, x, t, p, ctx))
     377             :             goto end;
     378           0 :         if (!BN_mod_mul(b, b, y, p, ctx))
     379             :             goto end;
     380             :         e = i;
     381             :     }
     382             : 
     383             :  vrfy:
     384             :     if (!err) {
     385             :         /*
     386             :          * verify the result -- the input might have been not a square (test
     387             :          * added in 0.9.8)
     388             :          */
     389             : 
     390           0 :         if (!BN_mod_sqr(x, ret, p, ctx))
     391             :             err = 1;
     392             : 
     393           0 :         if (!err && 0 != BN_cmp(x, A)) {
     394           0 :             BNerr(BN_F_BN_MOD_SQRT, BN_R_NOT_A_SQUARE);
     395             :             err = 1;
     396             :         }
     397             :     }
     398             : 
     399             :  end:
     400           0 :     if (err) {
     401           0 :         if (ret != NULL && ret != in) {
     402           0 :             BN_clear_free(ret);
     403             :         }
     404             :         ret = NULL;
     405             :     }
     406           0 :     BN_CTX_end(ctx);
     407             :     bn_check_top(ret);
     408           0 :     return ret;
     409             : }

Generated by: LCOV version 1.10